Loading…
ON TOTAL VERTEX IRREGULARITY STRENGTH OF SOME CLASSES OF TADPOLE CHAIN GRAPHS
A total k-labeling f that assigns V ∪ E into {1, 2, . . . , k} on graph G is named vertex irregular if wtf(u) ̸= wtf(v) for dissimilar vertices u,v in G with the weights wtf (u) = f(u) + ux∈E(G) f(ux). We call the minimum number k utilized in total labeling f as a total vertex irregularity strength...
Saved in:
Published in: | TWMS journal of applied and engineering mathematics 2021-01, Vol.11 - Special Issue (Jaem Vol 11 - Special Issue, 2021), p.133 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | Jaem Vol 11 - Special Issue, 2021 |
container_start_page | 133 |
container_title | TWMS journal of applied and engineering mathematics |
container_volume | 11 - Special Issue |
creator | Rosyida, I Indriati, D |
description | A total k-labeling f that assigns V ∪ E into {1, 2, . . . , k} on graph G is named vertex irregular if wtf(u) ̸= wtf(v) for dissimilar vertices u,v in G with the weights wtf (u) = f(u) + ux∈E(G) f(ux). We call the minimum number k utilized in total labeling f as a total vertex irregularity strength of G, symbolized by tvs(G). In this research, we focus on tadpole chain graphs that are chain graphs which con- tain tadpole graphs in their blocks. We investigate tvs of some classes of tadpole chain graphs,. i.e., Tr(4,n) and Tr(5,n) with length r. Some formulas are derived as follows: |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2469611411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2469611411</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-d36f9ce7617c36b89eb2a6c5e4e9bdb63bd06ae30e155e4b4029a5c23aff51013</originalsourceid><addsrcrecordid>eNotjz1rwzAYhEWh0JDmPwg6G_Tl1_YoXMU2KFaQlNJOQbLlIZQmjZP_X5f2luOe4Y57QCtGBWSUiuIJbeb5RBaVAAXhK7QzPfbGS43flPXqHXfWquagpe38B3beqr7xLTZb7MxO4VpL55T7zV6-7o1eUCu7HjdW7lv3jB6n8Dmnzb-v0WGrfN1m2jRdLXV2oSW_ZSOHqRpSAbQYOMSySpEFGPIkUhXHCDyOBELiJNF8gVEQVoV8YDxMU04J5Wv08td7uZ6_72m-HU_n-_VrmTwyARUsXynlP8snQoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469611411</pqid></control><display><type>article</type><title>ON TOTAL VERTEX IRREGULARITY STRENGTH OF SOME CLASSES OF TADPOLE CHAIN GRAPHS</title><source>Publicly Available Content Database</source><creator>Rosyida, I ; Indriati, D</creator><creatorcontrib>Rosyida, I ; Indriati, D</creatorcontrib><description>A total k-labeling f that assigns V ∪ E into {1, 2, . . . , k} on graph G is named vertex irregular if wtf(u) ̸= wtf(v) for dissimilar vertices u,v in G with the weights wtf (u) = f(u) + ux∈E(G) f(ux). We call the minimum number k utilized in total labeling f as a total vertex irregularity strength of G, symbolized by tvs(G). In this research, we focus on tadpole chain graphs that are chain graphs which con- tain tadpole graphs in their blocks. We investigate tvs of some classes of tadpole chain graphs,. i.e., Tr(4,n) and Tr(5,n) with length r. Some formulas are derived as follows:</description><identifier>EISSN: 2146-1147</identifier><language>eng</language><publisher>Istanbul: Elman Hasanoglu</publisher><subject>Apexes ; Chains ; Graphs ; Irregularities ; Labeling</subject><ispartof>TWMS journal of applied and engineering mathematics, 2021-01, Vol.11 - Special Issue (Jaem Vol 11 - Special Issue, 2021), p.133</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2469611411?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Rosyida, I</creatorcontrib><creatorcontrib>Indriati, D</creatorcontrib><title>ON TOTAL VERTEX IRREGULARITY STRENGTH OF SOME CLASSES OF TADPOLE CHAIN GRAPHS</title><title>TWMS journal of applied and engineering mathematics</title><description>A total k-labeling f that assigns V ∪ E into {1, 2, . . . , k} on graph G is named vertex irregular if wtf(u) ̸= wtf(v) for dissimilar vertices u,v in G with the weights wtf (u) = f(u) + ux∈E(G) f(ux). We call the minimum number k utilized in total labeling f as a total vertex irregularity strength of G, symbolized by tvs(G). In this research, we focus on tadpole chain graphs that are chain graphs which con- tain tadpole graphs in their blocks. We investigate tvs of some classes of tadpole chain graphs,. i.e., Tr(4,n) and Tr(5,n) with length r. Some formulas are derived as follows:</description><subject>Apexes</subject><subject>Chains</subject><subject>Graphs</subject><subject>Irregularities</subject><subject>Labeling</subject><issn>2146-1147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjz1rwzAYhEWh0JDmPwg6G_Tl1_YoXMU2KFaQlNJOQbLlIZQmjZP_X5f2luOe4Y57QCtGBWSUiuIJbeb5RBaVAAXhK7QzPfbGS43flPXqHXfWquagpe38B3beqr7xLTZb7MxO4VpL55T7zV6-7o1eUCu7HjdW7lv3jB6n8Dmnzb-v0WGrfN1m2jRdLXV2oSW_ZSOHqRpSAbQYOMSySpEFGPIkUhXHCDyOBELiJNF8gVEQVoV8YDxMU04J5Wv08td7uZ6_72m-HU_n-_VrmTwyARUsXynlP8snQoU</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Rosyida, I</creator><creator>Indriati, D</creator><general>Elman Hasanoglu</general><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>EDSIH</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20210101</creationdate><title>ON TOTAL VERTEX IRREGULARITY STRENGTH OF SOME CLASSES OF TADPOLE CHAIN GRAPHS</title><author>Rosyida, I ; Indriati, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-d36f9ce7617c36b89eb2a6c5e4e9bdb63bd06ae30e155e4b4029a5c23aff51013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apexes</topic><topic>Chains</topic><topic>Graphs</topic><topic>Irregularities</topic><topic>Labeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosyida, I</creatorcontrib><creatorcontrib>Indriati, D</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Turkey Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>TWMS journal of applied and engineering mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosyida, I</au><au>Indriati, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON TOTAL VERTEX IRREGULARITY STRENGTH OF SOME CLASSES OF TADPOLE CHAIN GRAPHS</atitle><jtitle>TWMS journal of applied and engineering mathematics</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>11 - Special Issue</volume><issue>Jaem Vol 11 - Special Issue, 2021</issue><spage>133</spage><pages>133-</pages><eissn>2146-1147</eissn><abstract>A total k-labeling f that assigns V ∪ E into {1, 2, . . . , k} on graph G is named vertex irregular if wtf(u) ̸= wtf(v) for dissimilar vertices u,v in G with the weights wtf (u) = f(u) + ux∈E(G) f(ux). We call the minimum number k utilized in total labeling f as a total vertex irregularity strength of G, symbolized by tvs(G). In this research, we focus on tadpole chain graphs that are chain graphs which con- tain tadpole graphs in their blocks. We investigate tvs of some classes of tadpole chain graphs,. i.e., Tr(4,n) and Tr(5,n) with length r. Some formulas are derived as follows:</abstract><cop>Istanbul</cop><pub>Elman Hasanoglu</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2146-1147 |
ispartof | TWMS journal of applied and engineering mathematics, 2021-01, Vol.11 - Special Issue (Jaem Vol 11 - Special Issue, 2021), p.133 |
issn | 2146-1147 |
language | eng |
recordid | cdi_proquest_journals_2469611411 |
source | Publicly Available Content Database |
subjects | Apexes Chains Graphs Irregularities Labeling |
title | ON TOTAL VERTEX IRREGULARITY STRENGTH OF SOME CLASSES OF TADPOLE CHAIN GRAPHS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20TOTAL%20VERTEX%20IRREGULARITY%20STRENGTH%20OF%20SOME%20CLASSES%20OF%20TADPOLE%20CHAIN%20GRAPHS&rft.jtitle=TWMS%20journal%20of%20applied%20and%20engineering%20mathematics&rft.au=Rosyida,%20I&rft.date=2021-01-01&rft.volume=11%20-%20Special%20Issue&rft.issue=Jaem%20Vol%2011%20-%20Special%20Issue,%202021&rft.spage=133&rft.pages=133-&rft.eissn=2146-1147&rft_id=info:doi/&rft_dat=%3Cproquest%3E2469611411%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-d36f9ce7617c36b89eb2a6c5e4e9bdb63bd06ae30e155e4b4029a5c23aff51013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2469611411&rft_id=info:pmid/&rfr_iscdi=true |