Loading…

Sol-gel synthesis of Li3VO4/C composites as anode materials for lithium-ion batteries

Li3VO4/C composites have been synthesized by a sol-gel method and post-annealing at 650 °C for 1 h in N2 flow using either tartaric acid, malic acid, or glucose as both chelating agents and carbon source. The presence of these organic additives crucially affects morphology and crystallite size of th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2021-02, Vol.853, p.157364, Article 157364
Main Authors: Thauer, E., Zakharova, G.S., Wegener, S.A., Zhu, Q., Klingeler, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-29371930cdead490d3cfd6dc1dc3c6b50b336bab7179ac48a3077bb7fbc2d5053
cites cdi_FETCH-LOGICAL-c403t-29371930cdead490d3cfd6dc1dc3c6b50b336bab7179ac48a3077bb7fbc2d5053
container_end_page
container_issue
container_start_page 157364
container_title Journal of alloys and compounds
container_volume 853
creator Thauer, E.
Zakharova, G.S.
Wegener, S.A.
Zhu, Q.
Klingeler, R.
description Li3VO4/C composites have been synthesized by a sol-gel method and post-annealing at 650 °C for 1 h in N2 flow using either tartaric acid, malic acid, or glucose as both chelating agents and carbon source. The presence of these organic additives crucially affects morphology and crystallite size of the final product. It is found that the electrochemical properties of Li3VO4/C as anode material for Li-ion batteries (LIBs) are influenced by the morphology, texture and carbon content of the material. When using carboxylic acids as carbon source composites with mesoporous structure and a high surface area are obtained that display an enhanced electrochemical activity. Initially, reversible capacity of about 400 mAh g−1 is obtained. In contrast, Li3VO4/C synthesized with glucose outperforms in terms of cycling stability. It exhibits a discharge capacity of 299 mAh g−1 after 100 cycles corresponding to an excellent capacity retention of 96%. The favorable effect of carbon composites on the electrochemical performance of Li3VO4 is shown. •Li3VO4/C composites were synthesized by a facile sol-gel thermolysis method.•Tartaric and malic acids have been used as both chelating agent and carbon source to produce Li3VO4/C for the first time.•Effect of organic additives on crystal structure, morphology and electrochemical properties is investigated.•Li3VO4/C composites exhibit superior electrochemical performance confirming the beneficial effect of carbon composites.
doi_str_mv 10.1016/j.jallcom.2020.157364
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2469842667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838820337282</els_id><sourcerecordid>2469842667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-29371930cdead490d3cfd6dc1dc3c6b50b336bab7179ac48a3077bb7fbc2d5053</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QQh43jbZZJPdk0jxCwo9aL2GfK3NsrupSSr035uyvQsDAzPvvDPzAHCP0QIjzJbdopN9r_2wKFGZaxUnjF6AGa45KShjzSWYoaasiprU9TW4ibFDCOGG4BnYfvi--LY9jMcx7Wx0EfoWrh352tDlCmbTvY8u2QhljtEbCweZbHCyj7D1AfYu7dxhKJwfoZLp1LLxFly1WWDvznkOti_Pn6u3Yr15fV89rQtNEUlF2RCez0DaWGlogwzRrWFGY6OJZqpCihCmpOKYN1LTWhLEuVK8Vbo0FarIHDxMvvvgfw42JtH5QxjzSlFS1tS0ZIxnVTWpdPAxBtuKfXCDDEeBkTgRFJ04ExQngmIimOcepzmbX_h1NoionR21NS5YnYTx7h-HPzPZfII</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469842667</pqid></control><display><type>article</type><title>Sol-gel synthesis of Li3VO4/C composites as anode materials for lithium-ion batteries</title><source>ScienceDirect Freedom Collection</source><creator>Thauer, E. ; Zakharova, G.S. ; Wegener, S.A. ; Zhu, Q. ; Klingeler, R.</creator><creatorcontrib>Thauer, E. ; Zakharova, G.S. ; Wegener, S.A. ; Zhu, Q. ; Klingeler, R.</creatorcontrib><description>Li3VO4/C composites have been synthesized by a sol-gel method and post-annealing at 650 °C for 1 h in N2 flow using either tartaric acid, malic acid, or glucose as both chelating agents and carbon source. The presence of these organic additives crucially affects morphology and crystallite size of the final product. It is found that the electrochemical properties of Li3VO4/C as anode material for Li-ion batteries (LIBs) are influenced by the morphology, texture and carbon content of the material. When using carboxylic acids as carbon source composites with mesoporous structure and a high surface area are obtained that display an enhanced electrochemical activity. Initially, reversible capacity of about 400 mAh g−1 is obtained. In contrast, Li3VO4/C synthesized with glucose outperforms in terms of cycling stability. It exhibits a discharge capacity of 299 mAh g−1 after 100 cycles corresponding to an excellent capacity retention of 96%. The favorable effect of carbon composites on the electrochemical performance of Li3VO4 is shown. •Li3VO4/C composites were synthesized by a facile sol-gel thermolysis method.•Tartaric and malic acids have been used as both chelating agent and carbon source to produce Li3VO4/C for the first time.•Effect of organic additives on crystal structure, morphology and electrochemical properties is investigated.•Li3VO4/C composites exhibit superior electrochemical performance confirming the beneficial effect of carbon composites.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2020.157364</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Additives ; Anode material ; Anodes ; Carbon ; Carbon content ; Carboxylic acids ; Chelating agents ; Chelation ; Composite materials ; Crystallites ; Electrochemical analysis ; Electrode materials ; Glucose ; Li3VO4/C composite ; Lithium-ion batteries ; Malic acid ; Morphology ; Reagents ; Rechargeable batteries ; Sol-gel processes ; Sol-gel thermolysis synthesis ; Tartaric acid</subject><ispartof>Journal of alloys and compounds, 2021-02, Vol.853, p.157364, Article 157364</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 5, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-29371930cdead490d3cfd6dc1dc3c6b50b336bab7179ac48a3077bb7fbc2d5053</citedby><cites>FETCH-LOGICAL-c403t-29371930cdead490d3cfd6dc1dc3c6b50b336bab7179ac48a3077bb7fbc2d5053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Thauer, E.</creatorcontrib><creatorcontrib>Zakharova, G.S.</creatorcontrib><creatorcontrib>Wegener, S.A.</creatorcontrib><creatorcontrib>Zhu, Q.</creatorcontrib><creatorcontrib>Klingeler, R.</creatorcontrib><title>Sol-gel synthesis of Li3VO4/C composites as anode materials for lithium-ion batteries</title><title>Journal of alloys and compounds</title><description>Li3VO4/C composites have been synthesized by a sol-gel method and post-annealing at 650 °C for 1 h in N2 flow using either tartaric acid, malic acid, or glucose as both chelating agents and carbon source. The presence of these organic additives crucially affects morphology and crystallite size of the final product. It is found that the electrochemical properties of Li3VO4/C as anode material for Li-ion batteries (LIBs) are influenced by the morphology, texture and carbon content of the material. When using carboxylic acids as carbon source composites with mesoporous structure and a high surface area are obtained that display an enhanced electrochemical activity. Initially, reversible capacity of about 400 mAh g−1 is obtained. In contrast, Li3VO4/C synthesized with glucose outperforms in terms of cycling stability. It exhibits a discharge capacity of 299 mAh g−1 after 100 cycles corresponding to an excellent capacity retention of 96%. The favorable effect of carbon composites on the electrochemical performance of Li3VO4 is shown. •Li3VO4/C composites were synthesized by a facile sol-gel thermolysis method.•Tartaric and malic acids have been used as both chelating agent and carbon source to produce Li3VO4/C for the first time.•Effect of organic additives on crystal structure, morphology and electrochemical properties is investigated.•Li3VO4/C composites exhibit superior electrochemical performance confirming the beneficial effect of carbon composites.</description><subject>Additives</subject><subject>Anode material</subject><subject>Anodes</subject><subject>Carbon</subject><subject>Carbon content</subject><subject>Carboxylic acids</subject><subject>Chelating agents</subject><subject>Chelation</subject><subject>Composite materials</subject><subject>Crystallites</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Glucose</subject><subject>Li3VO4/C composite</subject><subject>Lithium-ion batteries</subject><subject>Malic acid</subject><subject>Morphology</subject><subject>Reagents</subject><subject>Rechargeable batteries</subject><subject>Sol-gel processes</subject><subject>Sol-gel thermolysis synthesis</subject><subject>Tartaric acid</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QQh43jbZZJPdk0jxCwo9aL2GfK3NsrupSSr035uyvQsDAzPvvDPzAHCP0QIjzJbdopN9r_2wKFGZaxUnjF6AGa45KShjzSWYoaasiprU9TW4ibFDCOGG4BnYfvi--LY9jMcx7Wx0EfoWrh352tDlCmbTvY8u2QhljtEbCweZbHCyj7D1AfYu7dxhKJwfoZLp1LLxFly1WWDvznkOti_Pn6u3Yr15fV89rQtNEUlF2RCez0DaWGlogwzRrWFGY6OJZqpCihCmpOKYN1LTWhLEuVK8Vbo0FarIHDxMvvvgfw42JtH5QxjzSlFS1tS0ZIxnVTWpdPAxBtuKfXCDDEeBkTgRFJ04ExQngmIimOcepzmbX_h1NoionR21NS5YnYTx7h-HPzPZfII</recordid><startdate>20210205</startdate><enddate>20210205</enddate><creator>Thauer, E.</creator><creator>Zakharova, G.S.</creator><creator>Wegener, S.A.</creator><creator>Zhu, Q.</creator><creator>Klingeler, R.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210205</creationdate><title>Sol-gel synthesis of Li3VO4/C composites as anode materials for lithium-ion batteries</title><author>Thauer, E. ; Zakharova, G.S. ; Wegener, S.A. ; Zhu, Q. ; Klingeler, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-29371930cdead490d3cfd6dc1dc3c6b50b336bab7179ac48a3077bb7fbc2d5053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additives</topic><topic>Anode material</topic><topic>Anodes</topic><topic>Carbon</topic><topic>Carbon content</topic><topic>Carboxylic acids</topic><topic>Chelating agents</topic><topic>Chelation</topic><topic>Composite materials</topic><topic>Crystallites</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Glucose</topic><topic>Li3VO4/C composite</topic><topic>Lithium-ion batteries</topic><topic>Malic acid</topic><topic>Morphology</topic><topic>Reagents</topic><topic>Rechargeable batteries</topic><topic>Sol-gel processes</topic><topic>Sol-gel thermolysis synthesis</topic><topic>Tartaric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thauer, E.</creatorcontrib><creatorcontrib>Zakharova, G.S.</creatorcontrib><creatorcontrib>Wegener, S.A.</creatorcontrib><creatorcontrib>Zhu, Q.</creatorcontrib><creatorcontrib>Klingeler, R.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thauer, E.</au><au>Zakharova, G.S.</au><au>Wegener, S.A.</au><au>Zhu, Q.</au><au>Klingeler, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sol-gel synthesis of Li3VO4/C composites as anode materials for lithium-ion batteries</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2021-02-05</date><risdate>2021</risdate><volume>853</volume><spage>157364</spage><pages>157364-</pages><artnum>157364</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Li3VO4/C composites have been synthesized by a sol-gel method and post-annealing at 650 °C for 1 h in N2 flow using either tartaric acid, malic acid, or glucose as both chelating agents and carbon source. The presence of these organic additives crucially affects morphology and crystallite size of the final product. It is found that the electrochemical properties of Li3VO4/C as anode material for Li-ion batteries (LIBs) are influenced by the morphology, texture and carbon content of the material. When using carboxylic acids as carbon source composites with mesoporous structure and a high surface area are obtained that display an enhanced electrochemical activity. Initially, reversible capacity of about 400 mAh g−1 is obtained. In contrast, Li3VO4/C synthesized with glucose outperforms in terms of cycling stability. It exhibits a discharge capacity of 299 mAh g−1 after 100 cycles corresponding to an excellent capacity retention of 96%. The favorable effect of carbon composites on the electrochemical performance of Li3VO4 is shown. •Li3VO4/C composites were synthesized by a facile sol-gel thermolysis method.•Tartaric and malic acids have been used as both chelating agent and carbon source to produce Li3VO4/C for the first time.•Effect of organic additives on crystal structure, morphology and electrochemical properties is investigated.•Li3VO4/C composites exhibit superior electrochemical performance confirming the beneficial effect of carbon composites.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2020.157364</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2021-02, Vol.853, p.157364, Article 157364
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2469842667
source ScienceDirect Freedom Collection
subjects Additives
Anode material
Anodes
Carbon
Carbon content
Carboxylic acids
Chelating agents
Chelation
Composite materials
Crystallites
Electrochemical analysis
Electrode materials
Glucose
Li3VO4/C composite
Lithium-ion batteries
Malic acid
Morphology
Reagents
Rechargeable batteries
Sol-gel processes
Sol-gel thermolysis synthesis
Tartaric acid
title Sol-gel synthesis of Li3VO4/C composites as anode materials for lithium-ion batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A42%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sol-gel%20synthesis%20of%20Li3VO4/C%20composites%20as%20anode%20materials%20for%20lithium-ion%20batteries&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Thauer,%20E.&rft.date=2021-02-05&rft.volume=853&rft.spage=157364&rft.pages=157364-&rft.artnum=157364&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2020.157364&rft_dat=%3Cproquest_cross%3E2469842667%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-29371930cdead490d3cfd6dc1dc3c6b50b336bab7179ac48a3077bb7fbc2d5053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2469842667&rft_id=info:pmid/&rfr_iscdi=true