Loading…
Nonminimally coupled Boltzmann equation: Foundations
We derive the Boltzmann equation in the context of a gravity theory with nonminimal coupling between matter and curvature. We show that as the energy-momentum tensor is not conserved in these theories, it follows a condition on the normalization of a homogeneous distribution function. The Boltzmann...
Saved in:
Published in: | Physical review. D 2020-10, Vol.102 (8), Article 084051 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c277t-b06638783c19870e384376610486ddb102d6cd2ddeb49284346db211e03a5cf13 |
---|---|
cites | cdi_FETCH-LOGICAL-c277t-b06638783c19870e384376610486ddb102d6cd2ddeb49284346db211e03a5cf13 |
container_end_page | |
container_issue | 8 |
container_start_page | |
container_title | Physical review. D |
container_volume | 102 |
creator | Bertolami, Orfeu Gomes, Cláudio |
description | We derive the Boltzmann equation in the context of a gravity theory with nonminimal coupling between matter and curvature. We show that as the energy-momentum tensor is not conserved in these theories, it follows a condition on the normalization of a homogeneous distribution function. The Boltzmann H-theorem is preserved such that the entropy vector flux is still a nondecreasing function in these theories. The case of a homogeneous and isotropic universe is analyzed. |
doi_str_mv | 10.1103/PhysRevD.102.084051 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2469843611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2469843611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-b06638783c19870e384376610486ddb102d6cd2ddeb49284346db211e03a5cf13</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouKz7C7wUPLfOJNmk9aarq8KiInoObZNilzbZbVqh_nqzVj3Nw8w7Xy8h5wgJIrDLl4_Rv5rP2wSBJpByWOIRmVEuIQag2fE_I5yShfdbCCggk4gzwp-cbWtbt3nTjFHphl1jdHTjmv6rza2NzH7I-9rZq2jtBqt_2J-RkypvvFn8xjl5X9-9rR7izfP94-p6E5dUyj4uQAiWypSVmKUSDEs5k0Ig8FRoXYRztSg11doUPKOhyIUuKKIBli_LCtmcXExzd53bD8b3auuGzoaVinKRhQ6BBxWbVGXnvO9MpXZd-KcbFYI6OKT-HAoJqiaH2DeCYllm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469843611</pqid></control><display><type>article</type><title>Nonminimally coupled Boltzmann equation: Foundations</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Bertolami, Orfeu ; Gomes, Cláudio</creator><creatorcontrib>Bertolami, Orfeu ; Gomes, Cláudio</creatorcontrib><description>We derive the Boltzmann equation in the context of a gravity theory with nonminimal coupling between matter and curvature. We show that as the energy-momentum tensor is not conserved in these theories, it follows a condition on the normalization of a homogeneous distribution function. The Boltzmann H-theorem is preserved such that the entropy vector flux is still a nondecreasing function in these theories. The case of a homogeneous and isotropic universe is analyzed.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.102.084051</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Boltzmann transport equation ; Distribution functions ; Mathematical analysis ; Tensors</subject><ispartof>Physical review. D, 2020-10, Vol.102 (8), Article 084051</ispartof><rights>Copyright American Physical Society Oct 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-b06638783c19870e384376610486ddb102d6cd2ddeb49284346db211e03a5cf13</citedby><cites>FETCH-LOGICAL-c277t-b06638783c19870e384376610486ddb102d6cd2ddeb49284346db211e03a5cf13</cites><orcidid>0000-0001-6022-459X ; 0000-0002-7672-0560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Bertolami, Orfeu</creatorcontrib><creatorcontrib>Gomes, Cláudio</creatorcontrib><title>Nonminimally coupled Boltzmann equation: Foundations</title><title>Physical review. D</title><description>We derive the Boltzmann equation in the context of a gravity theory with nonminimal coupling between matter and curvature. We show that as the energy-momentum tensor is not conserved in these theories, it follows a condition on the normalization of a homogeneous distribution function. The Boltzmann H-theorem is preserved such that the entropy vector flux is still a nondecreasing function in these theories. The case of a homogeneous and isotropic universe is analyzed.</description><subject>Boltzmann transport equation</subject><subject>Distribution functions</subject><subject>Mathematical analysis</subject><subject>Tensors</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouKz7C7wUPLfOJNmk9aarq8KiInoObZNilzbZbVqh_nqzVj3Nw8w7Xy8h5wgJIrDLl4_Rv5rP2wSBJpByWOIRmVEuIQag2fE_I5yShfdbCCggk4gzwp-cbWtbt3nTjFHphl1jdHTjmv6rza2NzH7I-9rZq2jtBqt_2J-RkypvvFn8xjl5X9-9rR7izfP94-p6E5dUyj4uQAiWypSVmKUSDEs5k0Ig8FRoXYRztSg11doUPKOhyIUuKKIBli_LCtmcXExzd53bD8b3auuGzoaVinKRhQ6BBxWbVGXnvO9MpXZd-KcbFYI6OKT-HAoJqiaH2DeCYllm</recordid><startdate>20201022</startdate><enddate>20201022</enddate><creator>Bertolami, Orfeu</creator><creator>Gomes, Cláudio</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6022-459X</orcidid><orcidid>https://orcid.org/0000-0002-7672-0560</orcidid></search><sort><creationdate>20201022</creationdate><title>Nonminimally coupled Boltzmann equation: Foundations</title><author>Bertolami, Orfeu ; Gomes, Cláudio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-b06638783c19870e384376610486ddb102d6cd2ddeb49284346db211e03a5cf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boltzmann transport equation</topic><topic>Distribution functions</topic><topic>Mathematical analysis</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bertolami, Orfeu</creatorcontrib><creatorcontrib>Gomes, Cláudio</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bertolami, Orfeu</au><au>Gomes, Cláudio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonminimally coupled Boltzmann equation: Foundations</atitle><jtitle>Physical review. D</jtitle><date>2020-10-22</date><risdate>2020</risdate><volume>102</volume><issue>8</issue><artnum>084051</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We derive the Boltzmann equation in the context of a gravity theory with nonminimal coupling between matter and curvature. We show that as the energy-momentum tensor is not conserved in these theories, it follows a condition on the normalization of a homogeneous distribution function. The Boltzmann H-theorem is preserved such that the entropy vector flux is still a nondecreasing function in these theories. The case of a homogeneous and isotropic universe is analyzed.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.102.084051</doi><orcidid>https://orcid.org/0000-0001-6022-459X</orcidid><orcidid>https://orcid.org/0000-0002-7672-0560</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2020-10, Vol.102 (8), Article 084051 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2469843611 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Boltzmann transport equation Distribution functions Mathematical analysis Tensors |
title | Nonminimally coupled Boltzmann equation: Foundations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A34%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonminimally%20coupled%20Boltzmann%20equation:%20Foundations&rft.jtitle=Physical%20review.%20D&rft.au=Bertolami,%20Orfeu&rft.date=2020-10-22&rft.volume=102&rft.issue=8&rft.artnum=084051&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.102.084051&rft_dat=%3Cproquest_cross%3E2469843611%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c277t-b06638783c19870e384376610486ddb102d6cd2ddeb49284346db211e03a5cf13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2469843611&rft_id=info:pmid/&rfr_iscdi=true |