Loading…

Liquid crystal behavior of cellulose nanoparticles‐ethyl cellulose composites: Preparation, characterization, and rheology

This work deals with assessing the approach for preparation of cellulose nanoparticles (CNPs) to be acted as synergistic component in liquid crystal (LC) ethyl cellulose composite (EC‐CNPs). In this respect different structures of CNPs were prepared by acid and salt agents. These prepared CNPs were...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2021-03, Vol.138 (12), p.n/a
Main Authors: Basta, Altaf H., Lotfy, Vivian F., Micky, Jehane A., Salem, Aya M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work deals with assessing the approach for preparation of cellulose nanoparticles (CNPs) to be acted as synergistic component in liquid crystal (LC) ethyl cellulose composite (EC‐CNPs). In this respect different structures of CNPs were prepared by acid and salt agents. These prepared CNPs were characterized by carboxyl content, IR, transmission electron microscope (TEM), and zeta potential, while their composites with EC were characterized by rheological measurements as a key factor for measuring the critical concentration of LC behavior. The results showed that, the crystallinity of CNPs obtained by ammonium persulfate exceeded that prepared by sulfuric acid hydrolysis. TEM images of stained CNPs showed both methods led to produce nanoparticles have rod like shape with aspect ratio (L/W) between 7.69 ± 3 and 31.3 ± 5. For the rheological measurements, it demonstrated the efficient of incorporating the CNPs to EC (EC‐CNPs composites) to decrease the critical concentration of EC from 40 wt% to approximately 34 wt%.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.50067