Loading…

On Tikhonov’s method and optimal error bound for inverse source problem for a time-fractional diffusion equation

We investigate the linear but ill-posed inverse problem of determining a multi-dimensional space-dependent heat source in a time-fractional diffusion equation. We show that the problem is ill-posed in the Hilbert scale Hr(Rn) and establish global order optimal lower bound for the worst case error. N...

Full description

Saved in:
Bibliographic Details
Published in:Computers & mathematics with applications (1987) 2020-07, Vol.80 (1), p.61-81
Main Authors: Dien, Nguyen Minh, Hai, Dinh Nguyen Duy, Viet, Tran Quoc, Trong, Dang Duc
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c331t-878f19013e45515c13d99e82971c3c8320b12dc66c2b0f8417333f89b595de03
cites cdi_FETCH-LOGICAL-c331t-878f19013e45515c13d99e82971c3c8320b12dc66c2b0f8417333f89b595de03
container_end_page 81
container_issue 1
container_start_page 61
container_title Computers & mathematics with applications (1987)
container_volume 80
creator Dien, Nguyen Minh
Hai, Dinh Nguyen Duy
Viet, Tran Quoc
Trong, Dang Duc
description We investigate the linear but ill-posed inverse problem of determining a multi-dimensional space-dependent heat source in a time-fractional diffusion equation. We show that the problem is ill-posed in the Hilbert scale Hr(Rn) and establish global order optimal lower bound for the worst case error. Next, we use the Tikhonov regularization method to deal with this problem in the Hilbert scale Hr(Rn). Locally optimal choices of parameters for the family of regularization operator in the Hilbert scales Hr(Rn) are analyzed by a-priori and a-posteriori methods. Numerical implementations are presented to illustrate our theoretical findings.
doi_str_mv 10.1016/j.camwa.2020.02.024
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2469985401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122120300912</els_id><sourcerecordid>2469985401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-878f19013e45515c13d99e82971c3c8320b12dc66c2b0f8417333f89b595de03</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKtP4CbgesZc5pIsXEjxBoVuug-ZzAnN2E7aZKbiztfw9XwS09a1cCCHk3yHLz9Ct5TklNDqvsuN3nzonBFGcsJSFWdoQkXNs7qqxDmaECFFRhmjl-gqxo4QUnBGJigserx07yvf-_3P13fEGxhWvsW6b7HfDm6j1xhC8AE3fkwzmzrX7yFEwNGPwQDeBt-sYXO80jghkNmgzeB8n-DWWTvG1GPYjfowvEYXVq8j3PydU7R8flrOXrP54uVt9jjPDOd0yEQtLJWEcijKkpaG8lZKEEzW1HAjkn1DWWuqyrCGWFHQmnNuhWxKWbZA-BTdndYmv90IcVBd8k1KUbGiklKURVo-Rfz0ygQfYwCrtiF9OnwqStQhW9WpY7bqkK0iLFWRqIcTBcl_7yCoaBz0BloXwAyq9e5f_hcnKYS-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469985401</pqid></control><display><type>article</type><title>On Tikhonov’s method and optimal error bound for inverse source problem for a time-fractional diffusion equation</title><source>ScienceDirect Journals</source><creator>Dien, Nguyen Minh ; Hai, Dinh Nguyen Duy ; Viet, Tran Quoc ; Trong, Dang Duc</creator><creatorcontrib>Dien, Nguyen Minh ; Hai, Dinh Nguyen Duy ; Viet, Tran Quoc ; Trong, Dang Duc</creatorcontrib><description>We investigate the linear but ill-posed inverse problem of determining a multi-dimensional space-dependent heat source in a time-fractional diffusion equation. We show that the problem is ill-posed in the Hilbert scale Hr(Rn) and establish global order optimal lower bound for the worst case error. Next, we use the Tikhonov regularization method to deal with this problem in the Hilbert scale Hr(Rn). Locally optimal choices of parameters for the family of regularization operator in the Hilbert scales Hr(Rn) are analyzed by a-priori and a-posteriori methods. Numerical implementations are presented to illustrate our theoretical findings.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2020.02.024</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Ill posed problems ; Ill-posed problem ; Inverse problems ; Lower bounds ; Numerical methods ; Optimal error bound ; Regularization ; Regularization methods ; Tikhonov regularization method ; Time-fractional diffusion problem</subject><ispartof>Computers &amp; mathematics with applications (1987), 2020-07, Vol.80 (1), p.61-81</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-878f19013e45515c13d99e82971c3c8320b12dc66c2b0f8417333f89b595de03</citedby><cites>FETCH-LOGICAL-c331t-878f19013e45515c13d99e82971c3c8320b12dc66c2b0f8417333f89b595de03</cites><orcidid>0000-0002-4848-7132 ; 0000-0003-2255-7048 ; 0000-0002-6556-0004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Dien, Nguyen Minh</creatorcontrib><creatorcontrib>Hai, Dinh Nguyen Duy</creatorcontrib><creatorcontrib>Viet, Tran Quoc</creatorcontrib><creatorcontrib>Trong, Dang Duc</creatorcontrib><title>On Tikhonov’s method and optimal error bound for inverse source problem for a time-fractional diffusion equation</title><title>Computers &amp; mathematics with applications (1987)</title><description>We investigate the linear but ill-posed inverse problem of determining a multi-dimensional space-dependent heat source in a time-fractional diffusion equation. We show that the problem is ill-posed in the Hilbert scale Hr(Rn) and establish global order optimal lower bound for the worst case error. Next, we use the Tikhonov regularization method to deal with this problem in the Hilbert scale Hr(Rn). Locally optimal choices of parameters for the family of regularization operator in the Hilbert scales Hr(Rn) are analyzed by a-priori and a-posteriori methods. Numerical implementations are presented to illustrate our theoretical findings.</description><subject>Ill posed problems</subject><subject>Ill-posed problem</subject><subject>Inverse problems</subject><subject>Lower bounds</subject><subject>Numerical methods</subject><subject>Optimal error bound</subject><subject>Regularization</subject><subject>Regularization methods</subject><subject>Tikhonov regularization method</subject><subject>Time-fractional diffusion problem</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKtP4CbgesZc5pIsXEjxBoVuug-ZzAnN2E7aZKbiztfw9XwS09a1cCCHk3yHLz9Ct5TklNDqvsuN3nzonBFGcsJSFWdoQkXNs7qqxDmaECFFRhmjl-gqxo4QUnBGJigserx07yvf-_3P13fEGxhWvsW6b7HfDm6j1xhC8AE3fkwzmzrX7yFEwNGPwQDeBt-sYXO80jghkNmgzeB8n-DWWTvG1GPYjfowvEYXVq8j3PydU7R8flrOXrP54uVt9jjPDOd0yEQtLJWEcijKkpaG8lZKEEzW1HAjkn1DWWuqyrCGWFHQmnNuhWxKWbZA-BTdndYmv90IcVBd8k1KUbGiklKURVo-Rfz0ygQfYwCrtiF9OnwqStQhW9WpY7bqkK0iLFWRqIcTBcl_7yCoaBz0BloXwAyq9e5f_hcnKYS-</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Dien, Nguyen Minh</creator><creator>Hai, Dinh Nguyen Duy</creator><creator>Viet, Tran Quoc</creator><creator>Trong, Dang Duc</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4848-7132</orcidid><orcidid>https://orcid.org/0000-0003-2255-7048</orcidid><orcidid>https://orcid.org/0000-0002-6556-0004</orcidid></search><sort><creationdate>20200701</creationdate><title>On Tikhonov’s method and optimal error bound for inverse source problem for a time-fractional diffusion equation</title><author>Dien, Nguyen Minh ; Hai, Dinh Nguyen Duy ; Viet, Tran Quoc ; Trong, Dang Duc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-878f19013e45515c13d99e82971c3c8320b12dc66c2b0f8417333f89b595de03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ill posed problems</topic><topic>Ill-posed problem</topic><topic>Inverse problems</topic><topic>Lower bounds</topic><topic>Numerical methods</topic><topic>Optimal error bound</topic><topic>Regularization</topic><topic>Regularization methods</topic><topic>Tikhonov regularization method</topic><topic>Time-fractional diffusion problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dien, Nguyen Minh</creatorcontrib><creatorcontrib>Hai, Dinh Nguyen Duy</creatorcontrib><creatorcontrib>Viet, Tran Quoc</creatorcontrib><creatorcontrib>Trong, Dang Duc</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dien, Nguyen Minh</au><au>Hai, Dinh Nguyen Duy</au><au>Viet, Tran Quoc</au><au>Trong, Dang Duc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Tikhonov’s method and optimal error bound for inverse source problem for a time-fractional diffusion equation</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>80</volume><issue>1</issue><spage>61</spage><epage>81</epage><pages>61-81</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>We investigate the linear but ill-posed inverse problem of determining a multi-dimensional space-dependent heat source in a time-fractional diffusion equation. We show that the problem is ill-posed in the Hilbert scale Hr(Rn) and establish global order optimal lower bound for the worst case error. Next, we use the Tikhonov regularization method to deal with this problem in the Hilbert scale Hr(Rn). Locally optimal choices of parameters for the family of regularization operator in the Hilbert scales Hr(Rn) are analyzed by a-priori and a-posteriori methods. Numerical implementations are presented to illustrate our theoretical findings.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2020.02.024</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-4848-7132</orcidid><orcidid>https://orcid.org/0000-0003-2255-7048</orcidid><orcidid>https://orcid.org/0000-0002-6556-0004</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2020-07, Vol.80 (1), p.61-81
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_journals_2469985401
source ScienceDirect Journals
subjects Ill posed problems
Ill-posed problem
Inverse problems
Lower bounds
Numerical methods
Optimal error bound
Regularization
Regularization methods
Tikhonov regularization method
Time-fractional diffusion problem
title On Tikhonov’s method and optimal error bound for inverse source problem for a time-fractional diffusion equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Tikhonov%E2%80%99s%20method%20and%20optimal%20error%20bound%20for%20inverse%20source%20problem%20for%20a%20time-fractional%20diffusion%20equation&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Dien,%20Nguyen%20Minh&rft.date=2020-07-01&rft.volume=80&rft.issue=1&rft.spage=61&rft.epage=81&rft.pages=61-81&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2020.02.024&rft_dat=%3Cproquest_cross%3E2469985401%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-878f19013e45515c13d99e82971c3c8320b12dc66c2b0f8417333f89b595de03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2469985401&rft_id=info:pmid/&rfr_iscdi=true