Loading…
On Tikhonov’s method and optimal error bound for inverse source problem for a time-fractional diffusion equation
We investigate the linear but ill-posed inverse problem of determining a multi-dimensional space-dependent heat source in a time-fractional diffusion equation. We show that the problem is ill-posed in the Hilbert scale Hr(Rn) and establish global order optimal lower bound for the worst case error. N...
Saved in:
Published in: | Computers & mathematics with applications (1987) 2020-07, Vol.80 (1), p.61-81 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c331t-878f19013e45515c13d99e82971c3c8320b12dc66c2b0f8417333f89b595de03 |
---|---|
cites | cdi_FETCH-LOGICAL-c331t-878f19013e45515c13d99e82971c3c8320b12dc66c2b0f8417333f89b595de03 |
container_end_page | 81 |
container_issue | 1 |
container_start_page | 61 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 80 |
creator | Dien, Nguyen Minh Hai, Dinh Nguyen Duy Viet, Tran Quoc Trong, Dang Duc |
description | We investigate the linear but ill-posed inverse problem of determining a multi-dimensional space-dependent heat source in a time-fractional diffusion equation. We show that the problem is ill-posed in the Hilbert scale Hr(Rn) and establish global order optimal lower bound for the worst case error. Next, we use the Tikhonov regularization method to deal with this problem in the Hilbert scale Hr(Rn). Locally optimal choices of parameters for the family of regularization operator in the Hilbert scales Hr(Rn) are analyzed by a-priori and a-posteriori methods. Numerical implementations are presented to illustrate our theoretical findings. |
doi_str_mv | 10.1016/j.camwa.2020.02.024 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2469985401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122120300912</els_id><sourcerecordid>2469985401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-878f19013e45515c13d99e82971c3c8320b12dc66c2b0f8417333f89b595de03</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKtP4CbgesZc5pIsXEjxBoVuug-ZzAnN2E7aZKbiztfw9XwS09a1cCCHk3yHLz9Ct5TklNDqvsuN3nzonBFGcsJSFWdoQkXNs7qqxDmaECFFRhmjl-gqxo4QUnBGJigserx07yvf-_3P13fEGxhWvsW6b7HfDm6j1xhC8AE3fkwzmzrX7yFEwNGPwQDeBt-sYXO80jghkNmgzeB8n-DWWTvG1GPYjfowvEYXVq8j3PydU7R8flrOXrP54uVt9jjPDOd0yEQtLJWEcijKkpaG8lZKEEzW1HAjkn1DWWuqyrCGWFHQmnNuhWxKWbZA-BTdndYmv90IcVBd8k1KUbGiklKURVo-Rfz0ygQfYwCrtiF9OnwqStQhW9WpY7bqkK0iLFWRqIcTBcl_7yCoaBz0BloXwAyq9e5f_hcnKYS-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469985401</pqid></control><display><type>article</type><title>On Tikhonov’s method and optimal error bound for inverse source problem for a time-fractional diffusion equation</title><source>ScienceDirect Journals</source><creator>Dien, Nguyen Minh ; Hai, Dinh Nguyen Duy ; Viet, Tran Quoc ; Trong, Dang Duc</creator><creatorcontrib>Dien, Nguyen Minh ; Hai, Dinh Nguyen Duy ; Viet, Tran Quoc ; Trong, Dang Duc</creatorcontrib><description>We investigate the linear but ill-posed inverse problem of determining a multi-dimensional space-dependent heat source in a time-fractional diffusion equation. We show that the problem is ill-posed in the Hilbert scale Hr(Rn) and establish global order optimal lower bound for the worst case error. Next, we use the Tikhonov regularization method to deal with this problem in the Hilbert scale Hr(Rn). Locally optimal choices of parameters for the family of regularization operator in the Hilbert scales Hr(Rn) are analyzed by a-priori and a-posteriori methods. Numerical implementations are presented to illustrate our theoretical findings.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2020.02.024</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Ill posed problems ; Ill-posed problem ; Inverse problems ; Lower bounds ; Numerical methods ; Optimal error bound ; Regularization ; Regularization methods ; Tikhonov regularization method ; Time-fractional diffusion problem</subject><ispartof>Computers & mathematics with applications (1987), 2020-07, Vol.80 (1), p.61-81</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-878f19013e45515c13d99e82971c3c8320b12dc66c2b0f8417333f89b595de03</citedby><cites>FETCH-LOGICAL-c331t-878f19013e45515c13d99e82971c3c8320b12dc66c2b0f8417333f89b595de03</cites><orcidid>0000-0002-4848-7132 ; 0000-0003-2255-7048 ; 0000-0002-6556-0004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Dien, Nguyen Minh</creatorcontrib><creatorcontrib>Hai, Dinh Nguyen Duy</creatorcontrib><creatorcontrib>Viet, Tran Quoc</creatorcontrib><creatorcontrib>Trong, Dang Duc</creatorcontrib><title>On Tikhonov’s method and optimal error bound for inverse source problem for a time-fractional diffusion equation</title><title>Computers & mathematics with applications (1987)</title><description>We investigate the linear but ill-posed inverse problem of determining a multi-dimensional space-dependent heat source in a time-fractional diffusion equation. We show that the problem is ill-posed in the Hilbert scale Hr(Rn) and establish global order optimal lower bound for the worst case error. Next, we use the Tikhonov regularization method to deal with this problem in the Hilbert scale Hr(Rn). Locally optimal choices of parameters for the family of regularization operator in the Hilbert scales Hr(Rn) are analyzed by a-priori and a-posteriori methods. Numerical implementations are presented to illustrate our theoretical findings.</description><subject>Ill posed problems</subject><subject>Ill-posed problem</subject><subject>Inverse problems</subject><subject>Lower bounds</subject><subject>Numerical methods</subject><subject>Optimal error bound</subject><subject>Regularization</subject><subject>Regularization methods</subject><subject>Tikhonov regularization method</subject><subject>Time-fractional diffusion problem</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKtP4CbgesZc5pIsXEjxBoVuug-ZzAnN2E7aZKbiztfw9XwS09a1cCCHk3yHLz9Ct5TklNDqvsuN3nzonBFGcsJSFWdoQkXNs7qqxDmaECFFRhmjl-gqxo4QUnBGJigserx07yvf-_3P13fEGxhWvsW6b7HfDm6j1xhC8AE3fkwzmzrX7yFEwNGPwQDeBt-sYXO80jghkNmgzeB8n-DWWTvG1GPYjfowvEYXVq8j3PydU7R8flrOXrP54uVt9jjPDOd0yEQtLJWEcijKkpaG8lZKEEzW1HAjkn1DWWuqyrCGWFHQmnNuhWxKWbZA-BTdndYmv90IcVBd8k1KUbGiklKURVo-Rfz0ygQfYwCrtiF9OnwqStQhW9WpY7bqkK0iLFWRqIcTBcl_7yCoaBz0BloXwAyq9e5f_hcnKYS-</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Dien, Nguyen Minh</creator><creator>Hai, Dinh Nguyen Duy</creator><creator>Viet, Tran Quoc</creator><creator>Trong, Dang Duc</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4848-7132</orcidid><orcidid>https://orcid.org/0000-0003-2255-7048</orcidid><orcidid>https://orcid.org/0000-0002-6556-0004</orcidid></search><sort><creationdate>20200701</creationdate><title>On Tikhonov’s method and optimal error bound for inverse source problem for a time-fractional diffusion equation</title><author>Dien, Nguyen Minh ; Hai, Dinh Nguyen Duy ; Viet, Tran Quoc ; Trong, Dang Duc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-878f19013e45515c13d99e82971c3c8320b12dc66c2b0f8417333f89b595de03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ill posed problems</topic><topic>Ill-posed problem</topic><topic>Inverse problems</topic><topic>Lower bounds</topic><topic>Numerical methods</topic><topic>Optimal error bound</topic><topic>Regularization</topic><topic>Regularization methods</topic><topic>Tikhonov regularization method</topic><topic>Time-fractional diffusion problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dien, Nguyen Minh</creatorcontrib><creatorcontrib>Hai, Dinh Nguyen Duy</creatorcontrib><creatorcontrib>Viet, Tran Quoc</creatorcontrib><creatorcontrib>Trong, Dang Duc</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dien, Nguyen Minh</au><au>Hai, Dinh Nguyen Duy</au><au>Viet, Tran Quoc</au><au>Trong, Dang Duc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Tikhonov’s method and optimal error bound for inverse source problem for a time-fractional diffusion equation</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>80</volume><issue>1</issue><spage>61</spage><epage>81</epage><pages>61-81</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>We investigate the linear but ill-posed inverse problem of determining a multi-dimensional space-dependent heat source in a time-fractional diffusion equation. We show that the problem is ill-posed in the Hilbert scale Hr(Rn) and establish global order optimal lower bound for the worst case error. Next, we use the Tikhonov regularization method to deal with this problem in the Hilbert scale Hr(Rn). Locally optimal choices of parameters for the family of regularization operator in the Hilbert scales Hr(Rn) are analyzed by a-priori and a-posteriori methods. Numerical implementations are presented to illustrate our theoretical findings.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2020.02.024</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-4848-7132</orcidid><orcidid>https://orcid.org/0000-0003-2255-7048</orcidid><orcidid>https://orcid.org/0000-0002-6556-0004</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2020-07, Vol.80 (1), p.61-81 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_journals_2469985401 |
source | ScienceDirect Journals |
subjects | Ill posed problems Ill-posed problem Inverse problems Lower bounds Numerical methods Optimal error bound Regularization Regularization methods Tikhonov regularization method Time-fractional diffusion problem |
title | On Tikhonov’s method and optimal error bound for inverse source problem for a time-fractional diffusion equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Tikhonov%E2%80%99s%20method%20and%20optimal%20error%20bound%20for%20inverse%20source%20problem%20for%20a%20time-fractional%20diffusion%20equation&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Dien,%20Nguyen%20Minh&rft.date=2020-07-01&rft.volume=80&rft.issue=1&rft.spage=61&rft.epage=81&rft.pages=61-81&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2020.02.024&rft_dat=%3Cproquest_cross%3E2469985401%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-878f19013e45515c13d99e82971c3c8320b12dc66c2b0f8417333f89b595de03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2469985401&rft_id=info:pmid/&rfr_iscdi=true |