Loading…

Vibration response of monolayer 1H−MoTe2 to equibiaxial strain

Based on density functional theory and density functional perturbation theory calculations, we systematically investigate the vibration responses of monolayer 1H−MoTe2 to equibiaxial strains. It is found that, at the Γ point, the frequency shift of Raman-active modes (E′, A′1, and E′′) and infrared-...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2020-11, Vol.102 (19), p.1
Main Authors: Yang, Wei, Zhu, Ling-Yu, Zhou, Tian, Yang, Tao-Jun, Yan, Yi-Bo, Li, Jia-Jun, Zheng, Fa-Wei, Yang, Yu, Wang, Xiao-Hui, Xu, Wen-Bo, Zhang, Ping
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 19
container_start_page 1
container_title Physical review. B
container_volume 102
creator Yang, Wei
Zhu, Ling-Yu
Zhou, Tian
Yang, Tao-Jun
Yan, Yi-Bo
Li, Jia-Jun
Zheng, Fa-Wei
Yang, Yu
Wang, Xiao-Hui
Xu, Wen-Bo
Zhang, Ping
description Based on density functional theory and density functional perturbation theory calculations, we systematically investigate the vibration responses of monolayer 1H−MoTe2 to equibiaxial strains. It is found that, at the Γ point, the frequency shift of Raman-active modes (E′, A′1, and E′′) and infrared-active modes (A′′2 and E′) show domelike shapes; that is, their frequencies decrease monotonically under tensile strains but first increase and then decrease rapidly under compressive strains. The frequency-shift behaviors are revealed to come from vibration responses to both bond stretching and bond-angle bending in strained 1H−MoTe2. At the K point, a special acoustic mode becomes soft because its frequency drops to zero at a compressive strain of − 11.27 %. We find that electron occupancies in Mo dz2, Te px, and Te py orbitals weaken the vibration mode at K, which exhibits the in-plane vibration of Mo atoms and out-of-plane vibration of Te atoms. On the other hand, compressive strains enhance the Fermi surface nesting and abruptly soften the vibration frequency for one acoustic mode at K. Our results point out a way to detect the strain status of monolayer 1H−MoTe2 by measuring the vibration frequencies.
doi_str_mv 10.1103/PhysRevB.102.195431
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2470033113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470033113</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-d4631b70d26d1b5a90a53142ed9271a915626dd969345200ecda43f6ba5edaa03</originalsourceid><addsrcrecordid>eNo9js1Kw0AUhQdRsNQ-gZsB14n3zl-cnVrUChVFqtty40wwJWbSmUTsG7j2EX0SA4qrc-CD8x3GjhFyRJCnD6-79OjfL3MEkaPVSuIemwhlbGatsfv_XcMhm6W0AQA0YAuwE3b-XJeR-jq0PPrUhTZ5Hir-FtrQ0M5Hjovvz6-7sPKC94H77VCXNX3U1PDUR6rbI3ZQUZP87C-n7On6ajVfZMv7m9v5xTLr8Ez2mVNGYlmAE8ZhqckCaYlKeGdFgWRRm5G48a9UWgD4F0dKVqYk7R0RyCk7-d3tYtgOPvXrTRhiOyrXQhUAUiJK-QMHIk4v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470033113</pqid></control><display><type>article</type><title>Vibration response of monolayer 1H−MoTe2 to equibiaxial strain</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Yang, Wei ; Zhu, Ling-Yu ; Zhou, Tian ; Yang, Tao-Jun ; Yan, Yi-Bo ; Li, Jia-Jun ; Zheng, Fa-Wei ; Yang, Yu ; Wang, Xiao-Hui ; Xu, Wen-Bo ; Zhang, Ping</creator><creatorcontrib>Yang, Wei ; Zhu, Ling-Yu ; Zhou, Tian ; Yang, Tao-Jun ; Yan, Yi-Bo ; Li, Jia-Jun ; Zheng, Fa-Wei ; Yang, Yu ; Wang, Xiao-Hui ; Xu, Wen-Bo ; Zhang, Ping</creatorcontrib><description>Based on density functional theory and density functional perturbation theory calculations, we systematically investigate the vibration responses of monolayer 1H−MoTe2 to equibiaxial strains. It is found that, at the Γ point, the frequency shift of Raman-active modes (E′, A′1, and E′′) and infrared-active modes (A′′2 and E′) show domelike shapes; that is, their frequencies decrease monotonically under tensile strains but first increase and then decrease rapidly under compressive strains. The frequency-shift behaviors are revealed to come from vibration responses to both bond stretching and bond-angle bending in strained 1H−MoTe2. At the K point, a special acoustic mode becomes soft because its frequency drops to zero at a compressive strain of − 11.27 %. We find that electron occupancies in Mo dz2, Te px, and Te py orbitals weaken the vibration mode at K, which exhibits the in-plane vibration of Mo atoms and out-of-plane vibration of Te atoms. On the other hand, compressive strains enhance the Fermi surface nesting and abruptly soften the vibration frequency for one acoustic mode at K. Our results point out a way to detect the strain status of monolayer 1H−MoTe2 by measuring the vibration frequencies.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.102.195431</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Compressive properties ; Density functional theory ; Fermi surfaces ; Frequency shift ; Molybdenum compounds ; Monolayers ; Nesting ; Perturbation theory ; Tellurides ; Vibration measurement ; Vibration mode ; Vibration response</subject><ispartof>Physical review. B, 2020-11, Vol.102 (19), p.1</ispartof><rights>Copyright American Physical Society Nov 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Zhu, Ling-Yu</creatorcontrib><creatorcontrib>Zhou, Tian</creatorcontrib><creatorcontrib>Yang, Tao-Jun</creatorcontrib><creatorcontrib>Yan, Yi-Bo</creatorcontrib><creatorcontrib>Li, Jia-Jun</creatorcontrib><creatorcontrib>Zheng, Fa-Wei</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Wang, Xiao-Hui</creatorcontrib><creatorcontrib>Xu, Wen-Bo</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><title>Vibration response of monolayer 1H−MoTe2 to equibiaxial strain</title><title>Physical review. B</title><description>Based on density functional theory and density functional perturbation theory calculations, we systematically investigate the vibration responses of monolayer 1H−MoTe2 to equibiaxial strains. It is found that, at the Γ point, the frequency shift of Raman-active modes (E′, A′1, and E′′) and infrared-active modes (A′′2 and E′) show domelike shapes; that is, their frequencies decrease monotonically under tensile strains but first increase and then decrease rapidly under compressive strains. The frequency-shift behaviors are revealed to come from vibration responses to both bond stretching and bond-angle bending in strained 1H−MoTe2. At the K point, a special acoustic mode becomes soft because its frequency drops to zero at a compressive strain of − 11.27 %. We find that electron occupancies in Mo dz2, Te px, and Te py orbitals weaken the vibration mode at K, which exhibits the in-plane vibration of Mo atoms and out-of-plane vibration of Te atoms. On the other hand, compressive strains enhance the Fermi surface nesting and abruptly soften the vibration frequency for one acoustic mode at K. Our results point out a way to detect the strain status of monolayer 1H−MoTe2 by measuring the vibration frequencies.</description><subject>Compressive properties</subject><subject>Density functional theory</subject><subject>Fermi surfaces</subject><subject>Frequency shift</subject><subject>Molybdenum compounds</subject><subject>Monolayers</subject><subject>Nesting</subject><subject>Perturbation theory</subject><subject>Tellurides</subject><subject>Vibration measurement</subject><subject>Vibration mode</subject><subject>Vibration response</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9js1Kw0AUhQdRsNQ-gZsB14n3zl-cnVrUChVFqtty40wwJWbSmUTsG7j2EX0SA4qrc-CD8x3GjhFyRJCnD6-79OjfL3MEkaPVSuIemwhlbGatsfv_XcMhm6W0AQA0YAuwE3b-XJeR-jq0PPrUhTZ5Hir-FtrQ0M5Hjovvz6-7sPKC94H77VCXNX3U1PDUR6rbI3ZQUZP87C-n7On6ajVfZMv7m9v5xTLr8Ez2mVNGYlmAE8ZhqckCaYlKeGdFgWRRm5G48a9UWgD4F0dKVqYk7R0RyCk7-d3tYtgOPvXrTRhiOyrXQhUAUiJK-QMHIk4v</recordid><startdate>20201125</startdate><enddate>20201125</enddate><creator>Yang, Wei</creator><creator>Zhu, Ling-Yu</creator><creator>Zhou, Tian</creator><creator>Yang, Tao-Jun</creator><creator>Yan, Yi-Bo</creator><creator>Li, Jia-Jun</creator><creator>Zheng, Fa-Wei</creator><creator>Yang, Yu</creator><creator>Wang, Xiao-Hui</creator><creator>Xu, Wen-Bo</creator><creator>Zhang, Ping</creator><general>American Physical Society</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20201125</creationdate><title>Vibration response of monolayer 1H−MoTe2 to equibiaxial strain</title><author>Yang, Wei ; Zhu, Ling-Yu ; Zhou, Tian ; Yang, Tao-Jun ; Yan, Yi-Bo ; Li, Jia-Jun ; Zheng, Fa-Wei ; Yang, Yu ; Wang, Xiao-Hui ; Xu, Wen-Bo ; Zhang, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-d4631b70d26d1b5a90a53142ed9271a915626dd969345200ecda43f6ba5edaa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Compressive properties</topic><topic>Density functional theory</topic><topic>Fermi surfaces</topic><topic>Frequency shift</topic><topic>Molybdenum compounds</topic><topic>Monolayers</topic><topic>Nesting</topic><topic>Perturbation theory</topic><topic>Tellurides</topic><topic>Vibration measurement</topic><topic>Vibration mode</topic><topic>Vibration response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Zhu, Ling-Yu</creatorcontrib><creatorcontrib>Zhou, Tian</creatorcontrib><creatorcontrib>Yang, Tao-Jun</creatorcontrib><creatorcontrib>Yan, Yi-Bo</creatorcontrib><creatorcontrib>Li, Jia-Jun</creatorcontrib><creatorcontrib>Zheng, Fa-Wei</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Wang, Xiao-Hui</creatorcontrib><creatorcontrib>Xu, Wen-Bo</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Wei</au><au>Zhu, Ling-Yu</au><au>Zhou, Tian</au><au>Yang, Tao-Jun</au><au>Yan, Yi-Bo</au><au>Li, Jia-Jun</au><au>Zheng, Fa-Wei</au><au>Yang, Yu</au><au>Wang, Xiao-Hui</au><au>Xu, Wen-Bo</au><au>Zhang, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vibration response of monolayer 1H−MoTe2 to equibiaxial strain</atitle><jtitle>Physical review. B</jtitle><date>2020-11-25</date><risdate>2020</risdate><volume>102</volume><issue>19</issue><spage>1</spage><pages>1-</pages><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Based on density functional theory and density functional perturbation theory calculations, we systematically investigate the vibration responses of monolayer 1H−MoTe2 to equibiaxial strains. It is found that, at the Γ point, the frequency shift of Raman-active modes (E′, A′1, and E′′) and infrared-active modes (A′′2 and E′) show domelike shapes; that is, their frequencies decrease monotonically under tensile strains but first increase and then decrease rapidly under compressive strains. The frequency-shift behaviors are revealed to come from vibration responses to both bond stretching and bond-angle bending in strained 1H−MoTe2. At the K point, a special acoustic mode becomes soft because its frequency drops to zero at a compressive strain of − 11.27 %. We find that electron occupancies in Mo dz2, Te px, and Te py orbitals weaken the vibration mode at K, which exhibits the in-plane vibration of Mo atoms and out-of-plane vibration of Te atoms. On the other hand, compressive strains enhance the Fermi surface nesting and abruptly soften the vibration frequency for one acoustic mode at K. Our results point out a way to detect the strain status of monolayer 1H−MoTe2 by measuring the vibration frequencies.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.102.195431</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2020-11, Vol.102 (19), p.1
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2470033113
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Compressive properties
Density functional theory
Fermi surfaces
Frequency shift
Molybdenum compounds
Monolayers
Nesting
Perturbation theory
Tellurides
Vibration measurement
Vibration mode
Vibration response
title Vibration response of monolayer 1H−MoTe2 to equibiaxial strain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vibration%20response%20of%20monolayer%201H%E2%88%92MoTe2%20to%20equibiaxial%20strain&rft.jtitle=Physical%20review.%20B&rft.au=Yang,%20Wei&rft.date=2020-11-25&rft.volume=102&rft.issue=19&rft.spage=1&rft.pages=1-&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.102.195431&rft_dat=%3Cproquest%3E2470033113%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-d4631b70d26d1b5a90a53142ed9271a915626dd969345200ecda43f6ba5edaa03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2470033113&rft_id=info:pmid/&rfr_iscdi=true