Loading…
Vibration response of monolayer 1H−MoTe2 to equibiaxial strain
Based on density functional theory and density functional perturbation theory calculations, we systematically investigate the vibration responses of monolayer 1H−MoTe2 to equibiaxial strains. It is found that, at the Γ point, the frequency shift of Raman-active modes (E′, A′1, and E′′) and infrared-...
Saved in:
Published in: | Physical review. B 2020-11, Vol.102 (19), p.1 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 19 |
container_start_page | 1 |
container_title | Physical review. B |
container_volume | 102 |
creator | Yang, Wei Zhu, Ling-Yu Zhou, Tian Yang, Tao-Jun Yan, Yi-Bo Li, Jia-Jun Zheng, Fa-Wei Yang, Yu Wang, Xiao-Hui Xu, Wen-Bo Zhang, Ping |
description | Based on density functional theory and density functional perturbation theory calculations, we systematically investigate the vibration responses of monolayer 1H−MoTe2 to equibiaxial strains. It is found that, at the Γ point, the frequency shift of Raman-active modes (E′, A′1, and E′′) and infrared-active modes (A′′2 and E′) show domelike shapes; that is, their frequencies decrease monotonically under tensile strains but first increase and then decrease rapidly under compressive strains. The frequency-shift behaviors are revealed to come from vibration responses to both bond stretching and bond-angle bending in strained 1H−MoTe2. At the K point, a special acoustic mode becomes soft because its frequency drops to zero at a compressive strain of − 11.27 %. We find that electron occupancies in Mo dz2, Te px, and Te py orbitals weaken the vibration mode at K, which exhibits the in-plane vibration of Mo atoms and out-of-plane vibration of Te atoms. On the other hand, compressive strains enhance the Fermi surface nesting and abruptly soften the vibration frequency for one acoustic mode at K. Our results point out a way to detect the strain status of monolayer 1H−MoTe2 by measuring the vibration frequencies. |
doi_str_mv | 10.1103/PhysRevB.102.195431 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2470033113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470033113</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-d4631b70d26d1b5a90a53142ed9271a915626dd969345200ecda43f6ba5edaa03</originalsourceid><addsrcrecordid>eNo9js1Kw0AUhQdRsNQ-gZsB14n3zl-cnVrUChVFqtty40wwJWbSmUTsG7j2EX0SA4qrc-CD8x3GjhFyRJCnD6-79OjfL3MEkaPVSuIemwhlbGatsfv_XcMhm6W0AQA0YAuwE3b-XJeR-jq0PPrUhTZ5Hir-FtrQ0M5Hjovvz6-7sPKC94H77VCXNX3U1PDUR6rbI3ZQUZP87C-n7On6ajVfZMv7m9v5xTLr8Ez2mVNGYlmAE8ZhqckCaYlKeGdFgWRRm5G48a9UWgD4F0dKVqYk7R0RyCk7-d3tYtgOPvXrTRhiOyrXQhUAUiJK-QMHIk4v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470033113</pqid></control><display><type>article</type><title>Vibration response of monolayer 1H−MoTe2 to equibiaxial strain</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Yang, Wei ; Zhu, Ling-Yu ; Zhou, Tian ; Yang, Tao-Jun ; Yan, Yi-Bo ; Li, Jia-Jun ; Zheng, Fa-Wei ; Yang, Yu ; Wang, Xiao-Hui ; Xu, Wen-Bo ; Zhang, Ping</creator><creatorcontrib>Yang, Wei ; Zhu, Ling-Yu ; Zhou, Tian ; Yang, Tao-Jun ; Yan, Yi-Bo ; Li, Jia-Jun ; Zheng, Fa-Wei ; Yang, Yu ; Wang, Xiao-Hui ; Xu, Wen-Bo ; Zhang, Ping</creatorcontrib><description>Based on density functional theory and density functional perturbation theory calculations, we systematically investigate the vibration responses of monolayer 1H−MoTe2 to equibiaxial strains. It is found that, at the Γ point, the frequency shift of Raman-active modes (E′, A′1, and E′′) and infrared-active modes (A′′2 and E′) show domelike shapes; that is, their frequencies decrease monotonically under tensile strains but first increase and then decrease rapidly under compressive strains. The frequency-shift behaviors are revealed to come from vibration responses to both bond stretching and bond-angle bending in strained 1H−MoTe2. At the K point, a special acoustic mode becomes soft because its frequency drops to zero at a compressive strain of − 11.27 %. We find that electron occupancies in Mo dz2, Te px, and Te py orbitals weaken the vibration mode at K, which exhibits the in-plane vibration of Mo atoms and out-of-plane vibration of Te atoms. On the other hand, compressive strains enhance the Fermi surface nesting and abruptly soften the vibration frequency for one acoustic mode at K. Our results point out a way to detect the strain status of monolayer 1H−MoTe2 by measuring the vibration frequencies.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.102.195431</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Compressive properties ; Density functional theory ; Fermi surfaces ; Frequency shift ; Molybdenum compounds ; Monolayers ; Nesting ; Perturbation theory ; Tellurides ; Vibration measurement ; Vibration mode ; Vibration response</subject><ispartof>Physical review. B, 2020-11, Vol.102 (19), p.1</ispartof><rights>Copyright American Physical Society Nov 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Zhu, Ling-Yu</creatorcontrib><creatorcontrib>Zhou, Tian</creatorcontrib><creatorcontrib>Yang, Tao-Jun</creatorcontrib><creatorcontrib>Yan, Yi-Bo</creatorcontrib><creatorcontrib>Li, Jia-Jun</creatorcontrib><creatorcontrib>Zheng, Fa-Wei</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Wang, Xiao-Hui</creatorcontrib><creatorcontrib>Xu, Wen-Bo</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><title>Vibration response of monolayer 1H−MoTe2 to equibiaxial strain</title><title>Physical review. B</title><description>Based on density functional theory and density functional perturbation theory calculations, we systematically investigate the vibration responses of monolayer 1H−MoTe2 to equibiaxial strains. It is found that, at the Γ point, the frequency shift of Raman-active modes (E′, A′1, and E′′) and infrared-active modes (A′′2 and E′) show domelike shapes; that is, their frequencies decrease monotonically under tensile strains but first increase and then decrease rapidly under compressive strains. The frequency-shift behaviors are revealed to come from vibration responses to both bond stretching and bond-angle bending in strained 1H−MoTe2. At the K point, a special acoustic mode becomes soft because its frequency drops to zero at a compressive strain of − 11.27 %. We find that electron occupancies in Mo dz2, Te px, and Te py orbitals weaken the vibration mode at K, which exhibits the in-plane vibration of Mo atoms and out-of-plane vibration of Te atoms. On the other hand, compressive strains enhance the Fermi surface nesting and abruptly soften the vibration frequency for one acoustic mode at K. Our results point out a way to detect the strain status of monolayer 1H−MoTe2 by measuring the vibration frequencies.</description><subject>Compressive properties</subject><subject>Density functional theory</subject><subject>Fermi surfaces</subject><subject>Frequency shift</subject><subject>Molybdenum compounds</subject><subject>Monolayers</subject><subject>Nesting</subject><subject>Perturbation theory</subject><subject>Tellurides</subject><subject>Vibration measurement</subject><subject>Vibration mode</subject><subject>Vibration response</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9js1Kw0AUhQdRsNQ-gZsB14n3zl-cnVrUChVFqtty40wwJWbSmUTsG7j2EX0SA4qrc-CD8x3GjhFyRJCnD6-79OjfL3MEkaPVSuIemwhlbGatsfv_XcMhm6W0AQA0YAuwE3b-XJeR-jq0PPrUhTZ5Hir-FtrQ0M5Hjovvz6-7sPKC94H77VCXNX3U1PDUR6rbI3ZQUZP87C-n7On6ajVfZMv7m9v5xTLr8Ez2mVNGYlmAE8ZhqckCaYlKeGdFgWRRm5G48a9UWgD4F0dKVqYk7R0RyCk7-d3tYtgOPvXrTRhiOyrXQhUAUiJK-QMHIk4v</recordid><startdate>20201125</startdate><enddate>20201125</enddate><creator>Yang, Wei</creator><creator>Zhu, Ling-Yu</creator><creator>Zhou, Tian</creator><creator>Yang, Tao-Jun</creator><creator>Yan, Yi-Bo</creator><creator>Li, Jia-Jun</creator><creator>Zheng, Fa-Wei</creator><creator>Yang, Yu</creator><creator>Wang, Xiao-Hui</creator><creator>Xu, Wen-Bo</creator><creator>Zhang, Ping</creator><general>American Physical Society</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20201125</creationdate><title>Vibration response of monolayer 1H−MoTe2 to equibiaxial strain</title><author>Yang, Wei ; Zhu, Ling-Yu ; Zhou, Tian ; Yang, Tao-Jun ; Yan, Yi-Bo ; Li, Jia-Jun ; Zheng, Fa-Wei ; Yang, Yu ; Wang, Xiao-Hui ; Xu, Wen-Bo ; Zhang, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-d4631b70d26d1b5a90a53142ed9271a915626dd969345200ecda43f6ba5edaa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Compressive properties</topic><topic>Density functional theory</topic><topic>Fermi surfaces</topic><topic>Frequency shift</topic><topic>Molybdenum compounds</topic><topic>Monolayers</topic><topic>Nesting</topic><topic>Perturbation theory</topic><topic>Tellurides</topic><topic>Vibration measurement</topic><topic>Vibration mode</topic><topic>Vibration response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Zhu, Ling-Yu</creatorcontrib><creatorcontrib>Zhou, Tian</creatorcontrib><creatorcontrib>Yang, Tao-Jun</creatorcontrib><creatorcontrib>Yan, Yi-Bo</creatorcontrib><creatorcontrib>Li, Jia-Jun</creatorcontrib><creatorcontrib>Zheng, Fa-Wei</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Wang, Xiao-Hui</creatorcontrib><creatorcontrib>Xu, Wen-Bo</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Wei</au><au>Zhu, Ling-Yu</au><au>Zhou, Tian</au><au>Yang, Tao-Jun</au><au>Yan, Yi-Bo</au><au>Li, Jia-Jun</au><au>Zheng, Fa-Wei</au><au>Yang, Yu</au><au>Wang, Xiao-Hui</au><au>Xu, Wen-Bo</au><au>Zhang, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vibration response of monolayer 1H−MoTe2 to equibiaxial strain</atitle><jtitle>Physical review. B</jtitle><date>2020-11-25</date><risdate>2020</risdate><volume>102</volume><issue>19</issue><spage>1</spage><pages>1-</pages><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Based on density functional theory and density functional perturbation theory calculations, we systematically investigate the vibration responses of monolayer 1H−MoTe2 to equibiaxial strains. It is found that, at the Γ point, the frequency shift of Raman-active modes (E′, A′1, and E′′) and infrared-active modes (A′′2 and E′) show domelike shapes; that is, their frequencies decrease monotonically under tensile strains but first increase and then decrease rapidly under compressive strains. The frequency-shift behaviors are revealed to come from vibration responses to both bond stretching and bond-angle bending in strained 1H−MoTe2. At the K point, a special acoustic mode becomes soft because its frequency drops to zero at a compressive strain of − 11.27 %. We find that electron occupancies in Mo dz2, Te px, and Te py orbitals weaken the vibration mode at K, which exhibits the in-plane vibration of Mo atoms and out-of-plane vibration of Te atoms. On the other hand, compressive strains enhance the Fermi surface nesting and abruptly soften the vibration frequency for one acoustic mode at K. Our results point out a way to detect the strain status of monolayer 1H−MoTe2 by measuring the vibration frequencies.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.102.195431</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2020-11, Vol.102 (19), p.1 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2470033113 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Compressive properties Density functional theory Fermi surfaces Frequency shift Molybdenum compounds Monolayers Nesting Perturbation theory Tellurides Vibration measurement Vibration mode Vibration response |
title | Vibration response of monolayer 1H−MoTe2 to equibiaxial strain |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vibration%20response%20of%20monolayer%201H%E2%88%92MoTe2%20to%20equibiaxial%20strain&rft.jtitle=Physical%20review.%20B&rft.au=Yang,%20Wei&rft.date=2020-11-25&rft.volume=102&rft.issue=19&rft.spage=1&rft.pages=1-&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.102.195431&rft_dat=%3Cproquest%3E2470033113%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-d4631b70d26d1b5a90a53142ed9271a915626dd969345200ecda43f6ba5edaa03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2470033113&rft_id=info:pmid/&rfr_iscdi=true |