Loading…

Opto- electrical properties of p-SnSe:S/N-Si heterojunction for solar cell application

Pure SnSe thin film and doped with S at different percentage (0,3,5,7)% were deposited from alloy by thermal evaporation technique on glass substrate at room temperature with 400±20nm thickness .The influences of S dopant ratio on characterization of SnSe thin film Nano crystalline was investigated...

Full description

Saved in:
Bibliographic Details
Main Authors: Ahmed, Ghuzlan Sarhan, Al-Maiyaly, Bushra K. H., Hussein, Bushra H., Hassun, Hanan K.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pure SnSe thin film and doped with S at different percentage (0,3,5,7)% were deposited from alloy by thermal evaporation technique on glass substrate at room temperature with 400±20nm thickness .The influences of S dopant ratio on characterization of SnSe thin film Nano crystalline was investigated by using Atomic force microscopy(AFM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), Hall Effect measurement, UV-Vis absorption spectroscopy to study morphological, structural, electrical and optical properties respectively .The XRD showed that all the films have polycrystalline in nature with orthorhombic structure, with preferred orientation along (111)plane .These films was manufactured of very fine crystalline size in the range of (18.167-51.126)nm, depending on the S ratio doping, the results of AFM indicated that these films were Nano crystalline with grain size (60.12-84.25)nm .Direct band gap values with range(1.5-1.68)eV were gotten from optical absorption measurements. I-V characteristics for p- SnSe:S/n-Si heterojunctions show the efficiency of solar cell increase with increase doping ratio and the highest value at films doped with ratio (7%S). C-V measurements show that all junctions were an abrupt type.
ISSN:0094-243X
1551-7616
DOI:10.1063/5.0033131