Loading…

Structural Characteristics and Driving Factors of the Planktonic Eukaryotic Community in the Danjiangkou Reservoir, China

Planktonic eukaryotes are widespread in aquatic ecosystems, and the study of their community composition and driving factors is of great significance to protecting and maintaining the balance of these ecosystems. This study evaluates five typical ecological sites in the Danjiangkou Reservoir—the wat...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) 2020-12, Vol.12 (12), p.3499
Main Authors: Zheng, Bao-Hai, Chen, Zhao-Jin, Li, Yu-Ying, Fohrer, Nicola, Zhang, Yun, Wu, Dong-Yu, Yan, Xue-Yan, Li, Bai-Lian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Planktonic eukaryotes are widespread in aquatic ecosystems, and the study of their community composition and driving factors is of great significance to protecting and maintaining the balance of these ecosystems. This study evaluates five typical ecological sites in the Danjiangkou Reservoir—the water source for the project. This was done to comprehensively understand the composition of Danjiangkou Reservoir planktonic eukaryotes, and ensure the ecological balance of the water source for the South-to-North Water Diversion Project. The diversity of the planktonic eukaryotes in surface water and the factors driving changes in their abundance are analyzed with an 18S ribosomal DNA sequencing approach. Monitoring shows that the Danjiangkou Reservoir has good water quality. The Danjiangkou Reservoir planktonic eukaryote community is mainly composed of 11 phyla, of which Cryptomonadales is dominant, accounting for an average percentage of 65.19% of the community (47.2–84.90%). LEFSe analysis shows significant differences among samples in the abundances of 13 phyla, 20 classes, 23 orders, 26 families, and 27 genera, and there are also significant differences in the diversity of planktonic eukaryotes at different temporal and spatial scales. Redundancy analysis (RDA) show that water temperature, DO, SD, TN, and Chla are significant factors that affect the composition of the planktonic eukaryote community. Spearman rank correlation analysis combined with taxonomic difference analysis shows that Kathablepharidae and Choanoflagellida are not sensitive to environmental or physicochemical factors and that the interannual variations in their abundance are not significant. Network analysis shows that Protalveolata, Basidiomycota, P1-31, Bicosoecida, and Ochrophyta represent important nodes in the single-factor network, while Chytridiomycota, P1-31, Cryptomycota, Ochrophyta, Ichthyosporea, Bicosoecida, Protalveolata, and physicochemical factors (ORP, TN, WT, DO, SD, NH3-N, and NO3-N) represent important nodes in the two-factor network.
ISSN:2073-4441
2073-4441
DOI:10.3390/w12123499