Loading…
Invariant Jet differentials and Asymptotic Serre duality
We generalize the main result of Demailly \cite{D2} for the bundles \(E_{k,m}^{GG}(V^*)\) of jet differentials of order \(k\) and weighted degree \(m\) to the bundles \(E_{k,m}(V^*)\) of the invariant jet differentials of order \(k\) and weighted degree \(m\). Namely, Theorem 0.5 from \cite{D2} and...
Saved in:
Published in: | arXiv.org 2024-11 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Rahmati, Mohammad Reza |
description | We generalize the main result of Demailly \cite{D2} for the bundles \(E_{k,m}^{GG}(V^*)\) of jet differentials of order \(k\) and weighted degree \(m\) to the bundles \(E_{k,m}(V^*)\) of the invariant jet differentials of order \(k\) and weighted degree \(m\). Namely, Theorem 0.5 from \cite{D2} and Theorem 9.3 from \cite{D1} provide a lower bound \(\frac{c^k}{k}m^{n+kr-1}\) on the number of the linearly independent holomorphic global sections of \(E_{k,m}^{GG} V^* \bigotimes \mathcal{O}(-m \delta A)\) for some ample divisor \(A\). The group \(G_k\) of local reparametrizations of \((\mathbb{C},0)\) acts on the \(k\)-jets by orbits of dimension \(k\), so that there is an automatic lower bound \(\frac{c^k}{k} m^{n+kr-1}\) on the number of the linearly independent holomorphic global sections of \(E_{k,m}V^* \bigotimes \mathcal{O}(-m \delta A)\). We formulate and prove the existence of an asymptotic duality along the fibers of the Green-Griffiths jet bundles over projective manifolds. We also prove a Serre duality for asymptotic sections of jet bundles. An application is also given for partial application to the Green-Griffiths conjecture. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2470799634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470799634</sourcerecordid><originalsourceid>FETCH-proquest_journals_24707996343</originalsourceid><addsrcrecordid>eNqNyrEKwjAUQNEgCBbtPwScCzFJm3YUUdRV9xKaF0ipaU1ehP69HfwApzvcsyIZF-JQ1JLzDclj7BljvFK8LEVG6pv_6OC0R3oHpMZZCwE8Oj1Eqr2hxzi_JhzRdfQBIQA1SQ8O5x1Z28VA_uuW7C_n5-laTGF8J4jY9mMKflktl4qppqmEFP-pL2ZhNm8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470799634</pqid></control><display><type>article</type><title>Invariant Jet differentials and Asymptotic Serre duality</title><source>ProQuest - Publicly Available Content Database</source><creator>Rahmati, Mohammad Reza</creator><creatorcontrib>Rahmati, Mohammad Reza</creatorcontrib><description>We generalize the main result of Demailly \cite{D2} for the bundles \(E_{k,m}^{GG}(V^*)\) of jet differentials of order \(k\) and weighted degree \(m\) to the bundles \(E_{k,m}(V^*)\) of the invariant jet differentials of order \(k\) and weighted degree \(m\). Namely, Theorem 0.5 from \cite{D2} and Theorem 9.3 from \cite{D1} provide a lower bound \(\frac{c^k}{k}m^{n+kr-1}\) on the number of the linearly independent holomorphic global sections of \(E_{k,m}^{GG} V^* \bigotimes \mathcal{O}(-m \delta A)\) for some ample divisor \(A\). The group \(G_k\) of local reparametrizations of \((\mathbb{C},0)\) acts on the \(k\)-jets by orbits of dimension \(k\), so that there is an automatic lower bound \(\frac{c^k}{k} m^{n+kr-1}\) on the number of the linearly independent holomorphic global sections of \(E_{k,m}V^* \bigotimes \mathcal{O}(-m \delta A)\). We formulate and prove the existence of an asymptotic duality along the fibers of the Green-Griffiths jet bundles over projective manifolds. We also prove a Serre duality for asymptotic sections of jet bundles. An application is also given for partial application to the Green-Griffiths conjecture.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic properties ; Bundles ; Bundling ; Invariants</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2470799634?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Rahmati, Mohammad Reza</creatorcontrib><title>Invariant Jet differentials and Asymptotic Serre duality</title><title>arXiv.org</title><description>We generalize the main result of Demailly \cite{D2} for the bundles \(E_{k,m}^{GG}(V^*)\) of jet differentials of order \(k\) and weighted degree \(m\) to the bundles \(E_{k,m}(V^*)\) of the invariant jet differentials of order \(k\) and weighted degree \(m\). Namely, Theorem 0.5 from \cite{D2} and Theorem 9.3 from \cite{D1} provide a lower bound \(\frac{c^k}{k}m^{n+kr-1}\) on the number of the linearly independent holomorphic global sections of \(E_{k,m}^{GG} V^* \bigotimes \mathcal{O}(-m \delta A)\) for some ample divisor \(A\). The group \(G_k\) of local reparametrizations of \((\mathbb{C},0)\) acts on the \(k\)-jets by orbits of dimension \(k\), so that there is an automatic lower bound \(\frac{c^k}{k} m^{n+kr-1}\) on the number of the linearly independent holomorphic global sections of \(E_{k,m}V^* \bigotimes \mathcal{O}(-m \delta A)\). We formulate and prove the existence of an asymptotic duality along the fibers of the Green-Griffiths jet bundles over projective manifolds. We also prove a Serre duality for asymptotic sections of jet bundles. An application is also given for partial application to the Green-Griffiths conjecture.</description><subject>Asymptotic properties</subject><subject>Bundles</subject><subject>Bundling</subject><subject>Invariants</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrEKwjAUQNEgCBbtPwScCzFJm3YUUdRV9xKaF0ipaU1ehP69HfwApzvcsyIZF-JQ1JLzDclj7BljvFK8LEVG6pv_6OC0R3oHpMZZCwE8Oj1Eqr2hxzi_JhzRdfQBIQA1SQ8O5x1Z28VA_uuW7C_n5-laTGF8J4jY9mMKflktl4qppqmEFP-pL2ZhNm8</recordid><startdate>20241108</startdate><enddate>20241108</enddate><creator>Rahmati, Mohammad Reza</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241108</creationdate><title>Invariant Jet differentials and Asymptotic Serre duality</title><author>Rahmati, Mohammad Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24707996343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic properties</topic><topic>Bundles</topic><topic>Bundling</topic><topic>Invariants</topic><toplevel>online_resources</toplevel><creatorcontrib>Rahmati, Mohammad Reza</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahmati, Mohammad Reza</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Invariant Jet differentials and Asymptotic Serre duality</atitle><jtitle>arXiv.org</jtitle><date>2024-11-08</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We generalize the main result of Demailly \cite{D2} for the bundles \(E_{k,m}^{GG}(V^*)\) of jet differentials of order \(k\) and weighted degree \(m\) to the bundles \(E_{k,m}(V^*)\) of the invariant jet differentials of order \(k\) and weighted degree \(m\). Namely, Theorem 0.5 from \cite{D2} and Theorem 9.3 from \cite{D1} provide a lower bound \(\frac{c^k}{k}m^{n+kr-1}\) on the number of the linearly independent holomorphic global sections of \(E_{k,m}^{GG} V^* \bigotimes \mathcal{O}(-m \delta A)\) for some ample divisor \(A\). The group \(G_k\) of local reparametrizations of \((\mathbb{C},0)\) acts on the \(k\)-jets by orbits of dimension \(k\), so that there is an automatic lower bound \(\frac{c^k}{k} m^{n+kr-1}\) on the number of the linearly independent holomorphic global sections of \(E_{k,m}V^* \bigotimes \mathcal{O}(-m \delta A)\). We formulate and prove the existence of an asymptotic duality along the fibers of the Green-Griffiths jet bundles over projective manifolds. We also prove a Serre duality for asymptotic sections of jet bundles. An application is also given for partial application to the Green-Griffiths conjecture.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2470799634 |
source | ProQuest - Publicly Available Content Database |
subjects | Asymptotic properties Bundles Bundling Invariants |
title | Invariant Jet differentials and Asymptotic Serre duality |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A33%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Invariant%20Jet%20differentials%20and%20Asymptotic%20Serre%20duality&rft.jtitle=arXiv.org&rft.au=Rahmati,%20Mohammad%20Reza&rft.date=2024-11-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2470799634%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24707996343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2470799634&rft_id=info:pmid/&rfr_iscdi=true |