Loading…
Moore–Penrose generalized inverse mixture design applied in low‐density dispersive liquid–liquid microextraction
The modification in the nutritional composition of the ruminant diet causes significant alterations in the fatty acids (FAs) structure supplemented because of the action of rumen microorganisms. The modification in the FAs structure alters the role that these play in the ruminant metabolism. The Fol...
Saved in:
Published in: | Journal of chemometrics 2020-12, Vol.34 (12), p.n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2545-b02302192d90f731bd4c517863720ce20edf470f2afcfef2760fb88772e8e1bb3 |
container_end_page | n/a |
container_issue | 12 |
container_start_page | |
container_title | Journal of chemometrics |
container_volume | 34 |
creator | Bazzana, Matheus Julien Ferreira Saczk, Adelir Aparecida Faria, Letícia Rodrigues Campos, João Pedro Alves, Nadja Gomes Borges, Cleber Nogueira |
description | The modification in the nutritional composition of the ruminant diet causes significant alterations in the fatty acids (FAs) structure supplemented because of the action of rumen microorganisms. The modification in the FAs structure alters the role that these play in the ruminant metabolism. The Folch method is the most often used to determine fatty acids in these animals' tissues and presents certain disadvantages such as the great volume of solvent and low mass transfer from the analyte to the extracting phase. Thus, we tested the low‐density dispersive liquid–liquid microextraction (LD‐DLLME) as an alternative method to determine these substances. In this paper, a simples‐augmented mixture design was used. The Scheffé's polynomial was applied in that design, and Moore–Penrose generalized matrix inverse was used because of the possibility of concurrently determining value estimates of coefficients of the parameters that represent cubic terms. The application of the modeling allowed the chemical interpretation of the LD‐DLLME best extraction condition for linoleic acid in ruminant serum samples.
In this paper, we propose the application of Moore–Penrose generalized inverse to determine Scheffé full cubic model and concurrently determine the three coefficients dij. This procedure allows the chemical interpretation of Scheffé's mixture model, making it possible to optimize the LD‐DLLME extraction technique to determine linoleic acid in ruminant serum samples. |
doi_str_mv | 10.1002/cem.3275 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2470820252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470820252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2545-b02302192d90f731bd4c517863720ce20edf470f2afcfef2760fb88772e8e1bb3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqUgcYRIbNik-CepnSWqyo_UChYgsbOSeFy5SuPUTkrLqkdA4oY9CW7LltWM5n3zZvQQuiZ4QDCmdyUsBozy9AT1CM6ymFDxcYp6WIhhnDHBztGF93OMg8aSHlpNrXWw2_68Qu2sh2gGNbi8Ml-gIlOvwIXZwqzbzkGkwJtZHeVNU5mDHFX2c7f9VlB7024iZXwTFswKososO6OC77EJFqWzsG5dXrbG1pfoTOeVh6u_2kfvD-O30VM8eXl8Ht1P4pKmSRoXmDJMSUZVhjVnpFBJmRIuhoxTXALFoHTCsaa5LjVoyodYF0JwTkEAKQrWRzdH38bZZQe-lXPbuTqclDQsCoppSgN1e6TCj9470LJxZpG7jSRY7lOVIVW5TzWg8RH9NBVs_uXkaDw98L8woX5j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470820252</pqid></control><display><type>article</type><title>Moore–Penrose generalized inverse mixture design applied in low‐density dispersive liquid–liquid microextraction</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Bazzana, Matheus Julien Ferreira ; Saczk, Adelir Aparecida ; Faria, Letícia Rodrigues ; Campos, João Pedro ; Alves, Nadja Gomes ; Borges, Cleber Nogueira</creator><creatorcontrib>Bazzana, Matheus Julien Ferreira ; Saczk, Adelir Aparecida ; Faria, Letícia Rodrigues ; Campos, João Pedro ; Alves, Nadja Gomes ; Borges, Cleber Nogueira</creatorcontrib><description>The modification in the nutritional composition of the ruminant diet causes significant alterations in the fatty acids (FAs) structure supplemented because of the action of rumen microorganisms. The modification in the FAs structure alters the role that these play in the ruminant metabolism. The Folch method is the most often used to determine fatty acids in these animals' tissues and presents certain disadvantages such as the great volume of solvent and low mass transfer from the analyte to the extracting phase. Thus, we tested the low‐density dispersive liquid–liquid microextraction (LD‐DLLME) as an alternative method to determine these substances. In this paper, a simples‐augmented mixture design was used. The Scheffé's polynomial was applied in that design, and Moore–Penrose generalized matrix inverse was used because of the possibility of concurrently determining value estimates of coefficients of the parameters that represent cubic terms. The application of the modeling allowed the chemical interpretation of the LD‐DLLME best extraction condition for linoleic acid in ruminant serum samples.
In this paper, we propose the application of Moore–Penrose generalized inverse to determine Scheffé full cubic model and concurrently determine the three coefficients dij. This procedure allows the chemical interpretation of Scheffé's mixture model, making it possible to optimize the LD‐DLLME extraction technique to determine linoleic acid in ruminant serum samples.</description><identifier>ISSN: 0886-9383</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.3275</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Animal tissues ; blood serum ; Density ; Design ; Design modifications ; Dispersion ; Fatty acids ; Generalized inverse ; linoleic acid ; Mass transfer ; Metabolism ; Microorganisms ; miniaturized technique ; mixture design ; Parameter estimation ; Polynomials ; ruminants</subject><ispartof>Journal of chemometrics, 2020-12, Vol.34 (12), p.n/a</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2545-b02302192d90f731bd4c517863720ce20edf470f2afcfef2760fb88772e8e1bb3</cites><orcidid>0000-0001-9707-2913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bazzana, Matheus Julien Ferreira</creatorcontrib><creatorcontrib>Saczk, Adelir Aparecida</creatorcontrib><creatorcontrib>Faria, Letícia Rodrigues</creatorcontrib><creatorcontrib>Campos, João Pedro</creatorcontrib><creatorcontrib>Alves, Nadja Gomes</creatorcontrib><creatorcontrib>Borges, Cleber Nogueira</creatorcontrib><title>Moore–Penrose generalized inverse mixture design applied in low‐density dispersive liquid–liquid microextraction</title><title>Journal of chemometrics</title><description>The modification in the nutritional composition of the ruminant diet causes significant alterations in the fatty acids (FAs) structure supplemented because of the action of rumen microorganisms. The modification in the FAs structure alters the role that these play in the ruminant metabolism. The Folch method is the most often used to determine fatty acids in these animals' tissues and presents certain disadvantages such as the great volume of solvent and low mass transfer from the analyte to the extracting phase. Thus, we tested the low‐density dispersive liquid–liquid microextraction (LD‐DLLME) as an alternative method to determine these substances. In this paper, a simples‐augmented mixture design was used. The Scheffé's polynomial was applied in that design, and Moore–Penrose generalized matrix inverse was used because of the possibility of concurrently determining value estimates of coefficients of the parameters that represent cubic terms. The application of the modeling allowed the chemical interpretation of the LD‐DLLME best extraction condition for linoleic acid in ruminant serum samples.
In this paper, we propose the application of Moore–Penrose generalized inverse to determine Scheffé full cubic model and concurrently determine the three coefficients dij. This procedure allows the chemical interpretation of Scheffé's mixture model, making it possible to optimize the LD‐DLLME extraction technique to determine linoleic acid in ruminant serum samples.</description><subject>Animal tissues</subject><subject>blood serum</subject><subject>Density</subject><subject>Design</subject><subject>Design modifications</subject><subject>Dispersion</subject><subject>Fatty acids</subject><subject>Generalized inverse</subject><subject>linoleic acid</subject><subject>Mass transfer</subject><subject>Metabolism</subject><subject>Microorganisms</subject><subject>miniaturized technique</subject><subject>mixture design</subject><subject>Parameter estimation</subject><subject>Polynomials</subject><subject>ruminants</subject><issn>0886-9383</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqUgcYRIbNik-CepnSWqyo_UChYgsbOSeFy5SuPUTkrLqkdA4oY9CW7LltWM5n3zZvQQuiZ4QDCmdyUsBozy9AT1CM6ymFDxcYp6WIhhnDHBztGF93OMg8aSHlpNrXWw2_68Qu2sh2gGNbi8Ml-gIlOvwIXZwqzbzkGkwJtZHeVNU5mDHFX2c7f9VlB7024iZXwTFswKososO6OC77EJFqWzsG5dXrbG1pfoTOeVh6u_2kfvD-O30VM8eXl8Ht1P4pKmSRoXmDJMSUZVhjVnpFBJmRIuhoxTXALFoHTCsaa5LjVoyodYF0JwTkEAKQrWRzdH38bZZQe-lXPbuTqclDQsCoppSgN1e6TCj9470LJxZpG7jSRY7lOVIVW5TzWg8RH9NBVs_uXkaDw98L8woX5j</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Bazzana, Matheus Julien Ferreira</creator><creator>Saczk, Adelir Aparecida</creator><creator>Faria, Letícia Rodrigues</creator><creator>Campos, João Pedro</creator><creator>Alves, Nadja Gomes</creator><creator>Borges, Cleber Nogueira</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9707-2913</orcidid></search><sort><creationdate>202012</creationdate><title>Moore–Penrose generalized inverse mixture design applied in low‐density dispersive liquid–liquid microextraction</title><author>Bazzana, Matheus Julien Ferreira ; Saczk, Adelir Aparecida ; Faria, Letícia Rodrigues ; Campos, João Pedro ; Alves, Nadja Gomes ; Borges, Cleber Nogueira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2545-b02302192d90f731bd4c517863720ce20edf470f2afcfef2760fb88772e8e1bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal tissues</topic><topic>blood serum</topic><topic>Density</topic><topic>Design</topic><topic>Design modifications</topic><topic>Dispersion</topic><topic>Fatty acids</topic><topic>Generalized inverse</topic><topic>linoleic acid</topic><topic>Mass transfer</topic><topic>Metabolism</topic><topic>Microorganisms</topic><topic>miniaturized technique</topic><topic>mixture design</topic><topic>Parameter estimation</topic><topic>Polynomials</topic><topic>ruminants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bazzana, Matheus Julien Ferreira</creatorcontrib><creatorcontrib>Saczk, Adelir Aparecida</creatorcontrib><creatorcontrib>Faria, Letícia Rodrigues</creatorcontrib><creatorcontrib>Campos, João Pedro</creatorcontrib><creatorcontrib>Alves, Nadja Gomes</creatorcontrib><creatorcontrib>Borges, Cleber Nogueira</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bazzana, Matheus Julien Ferreira</au><au>Saczk, Adelir Aparecida</au><au>Faria, Letícia Rodrigues</au><au>Campos, João Pedro</au><au>Alves, Nadja Gomes</au><au>Borges, Cleber Nogueira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moore–Penrose generalized inverse mixture design applied in low‐density dispersive liquid–liquid microextraction</atitle><jtitle>Journal of chemometrics</jtitle><date>2020-12</date><risdate>2020</risdate><volume>34</volume><issue>12</issue><epage>n/a</epage><issn>0886-9383</issn><eissn>1099-128X</eissn><abstract>The modification in the nutritional composition of the ruminant diet causes significant alterations in the fatty acids (FAs) structure supplemented because of the action of rumen microorganisms. The modification in the FAs structure alters the role that these play in the ruminant metabolism. The Folch method is the most often used to determine fatty acids in these animals' tissues and presents certain disadvantages such as the great volume of solvent and low mass transfer from the analyte to the extracting phase. Thus, we tested the low‐density dispersive liquid–liquid microextraction (LD‐DLLME) as an alternative method to determine these substances. In this paper, a simples‐augmented mixture design was used. The Scheffé's polynomial was applied in that design, and Moore–Penrose generalized matrix inverse was used because of the possibility of concurrently determining value estimates of coefficients of the parameters that represent cubic terms. The application of the modeling allowed the chemical interpretation of the LD‐DLLME best extraction condition for linoleic acid in ruminant serum samples.
In this paper, we propose the application of Moore–Penrose generalized inverse to determine Scheffé full cubic model and concurrently determine the three coefficients dij. This procedure allows the chemical interpretation of Scheffé's mixture model, making it possible to optimize the LD‐DLLME extraction technique to determine linoleic acid in ruminant serum samples.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cem.3275</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9707-2913</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0886-9383 |
ispartof | Journal of chemometrics, 2020-12, Vol.34 (12), p.n/a |
issn | 0886-9383 1099-128X |
language | eng |
recordid | cdi_proquest_journals_2470820252 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Animal tissues blood serum Density Design Design modifications Dispersion Fatty acids Generalized inverse linoleic acid Mass transfer Metabolism Microorganisms miniaturized technique mixture design Parameter estimation Polynomials ruminants |
title | Moore–Penrose generalized inverse mixture design applied in low‐density dispersive liquid–liquid microextraction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moore%E2%80%93Penrose%20generalized%20inverse%20mixture%20design%20applied%20in%20low%E2%80%90density%20dispersive%20liquid%E2%80%93liquid%20microextraction&rft.jtitle=Journal%20of%20chemometrics&rft.au=Bazzana,%20Matheus%20Julien%20Ferreira&rft.date=2020-12&rft.volume=34&rft.issue=12&rft.epage=n/a&rft.issn=0886-9383&rft.eissn=1099-128X&rft_id=info:doi/10.1002/cem.3275&rft_dat=%3Cproquest_cross%3E2470820252%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2545-b02302192d90f731bd4c517863720ce20edf470f2afcfef2760fb88772e8e1bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2470820252&rft_id=info:pmid/&rfr_iscdi=true |