Loading…

Moore–Penrose generalized inverse mixture design applied in low‐density dispersive liquid–liquid microextraction

The modification in the nutritional composition of the ruminant diet causes significant alterations in the fatty acids (FAs) structure supplemented because of the action of rumen microorganisms. The modification in the FAs structure alters the role that these play in the ruminant metabolism. The Fol...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemometrics 2020-12, Vol.34 (12), p.n/a
Main Authors: Bazzana, Matheus Julien Ferreira, Saczk, Adelir Aparecida, Faria, Letícia Rodrigues, Campos, João Pedro, Alves, Nadja Gomes, Borges, Cleber Nogueira
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2545-b02302192d90f731bd4c517863720ce20edf470f2afcfef2760fb88772e8e1bb3
container_end_page n/a
container_issue 12
container_start_page
container_title Journal of chemometrics
container_volume 34
creator Bazzana, Matheus Julien Ferreira
Saczk, Adelir Aparecida
Faria, Letícia Rodrigues
Campos, João Pedro
Alves, Nadja Gomes
Borges, Cleber Nogueira
description The modification in the nutritional composition of the ruminant diet causes significant alterations in the fatty acids (FAs) structure supplemented because of the action of rumen microorganisms. The modification in the FAs structure alters the role that these play in the ruminant metabolism. The Folch method is the most often used to determine fatty acids in these animals' tissues and presents certain disadvantages such as the great volume of solvent and low mass transfer from the analyte to the extracting phase. Thus, we tested the low‐density dispersive liquid–liquid microextraction (LD‐DLLME) as an alternative method to determine these substances. In this paper, a simples‐augmented mixture design was used. The Scheffé's polynomial was applied in that design, and Moore–Penrose generalized matrix inverse was used because of the possibility of concurrently determining value estimates of coefficients of the parameters that represent cubic terms. The application of the modeling allowed the chemical interpretation of the LD‐DLLME best extraction condition for linoleic acid in ruminant serum samples. In this paper, we propose the application of Moore–Penrose generalized inverse to determine Scheffé full cubic model and concurrently determine the three coefficients dij. This procedure allows the chemical interpretation of Scheffé's mixture model, making it possible to optimize the LD‐DLLME extraction technique to determine linoleic acid in ruminant serum samples.
doi_str_mv 10.1002/cem.3275
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2470820252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470820252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2545-b02302192d90f731bd4c517863720ce20edf470f2afcfef2760fb88772e8e1bb3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqUgcYRIbNik-CepnSWqyo_UChYgsbOSeFy5SuPUTkrLqkdA4oY9CW7LltWM5n3zZvQQuiZ4QDCmdyUsBozy9AT1CM6ymFDxcYp6WIhhnDHBztGF93OMg8aSHlpNrXWw2_68Qu2sh2gGNbi8Ml-gIlOvwIXZwqzbzkGkwJtZHeVNU5mDHFX2c7f9VlB7024iZXwTFswKososO6OC77EJFqWzsG5dXrbG1pfoTOeVh6u_2kfvD-O30VM8eXl8Ht1P4pKmSRoXmDJMSUZVhjVnpFBJmRIuhoxTXALFoHTCsaa5LjVoyodYF0JwTkEAKQrWRzdH38bZZQe-lXPbuTqclDQsCoppSgN1e6TCj9470LJxZpG7jSRY7lOVIVW5TzWg8RH9NBVs_uXkaDw98L8woX5j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470820252</pqid></control><display><type>article</type><title>Moore–Penrose generalized inverse mixture design applied in low‐density dispersive liquid–liquid microextraction</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Bazzana, Matheus Julien Ferreira ; Saczk, Adelir Aparecida ; Faria, Letícia Rodrigues ; Campos, João Pedro ; Alves, Nadja Gomes ; Borges, Cleber Nogueira</creator><creatorcontrib>Bazzana, Matheus Julien Ferreira ; Saczk, Adelir Aparecida ; Faria, Letícia Rodrigues ; Campos, João Pedro ; Alves, Nadja Gomes ; Borges, Cleber Nogueira</creatorcontrib><description>The modification in the nutritional composition of the ruminant diet causes significant alterations in the fatty acids (FAs) structure supplemented because of the action of rumen microorganisms. The modification in the FAs structure alters the role that these play in the ruminant metabolism. The Folch method is the most often used to determine fatty acids in these animals' tissues and presents certain disadvantages such as the great volume of solvent and low mass transfer from the analyte to the extracting phase. Thus, we tested the low‐density dispersive liquid–liquid microextraction (LD‐DLLME) as an alternative method to determine these substances. In this paper, a simples‐augmented mixture design was used. The Scheffé's polynomial was applied in that design, and Moore–Penrose generalized matrix inverse was used because of the possibility of concurrently determining value estimates of coefficients of the parameters that represent cubic terms. The application of the modeling allowed the chemical interpretation of the LD‐DLLME best extraction condition for linoleic acid in ruminant serum samples. In this paper, we propose the application of Moore–Penrose generalized inverse to determine Scheffé full cubic model and concurrently determine the three coefficients dij. This procedure allows the chemical interpretation of Scheffé's mixture model, making it possible to optimize the LD‐DLLME extraction technique to determine linoleic acid in ruminant serum samples.</description><identifier>ISSN: 0886-9383</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.3275</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Animal tissues ; blood serum ; Density ; Design ; Design modifications ; Dispersion ; Fatty acids ; Generalized inverse ; linoleic acid ; Mass transfer ; Metabolism ; Microorganisms ; miniaturized technique ; mixture design ; Parameter estimation ; Polynomials ; ruminants</subject><ispartof>Journal of chemometrics, 2020-12, Vol.34 (12), p.n/a</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2545-b02302192d90f731bd4c517863720ce20edf470f2afcfef2760fb88772e8e1bb3</cites><orcidid>0000-0001-9707-2913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bazzana, Matheus Julien Ferreira</creatorcontrib><creatorcontrib>Saczk, Adelir Aparecida</creatorcontrib><creatorcontrib>Faria, Letícia Rodrigues</creatorcontrib><creatorcontrib>Campos, João Pedro</creatorcontrib><creatorcontrib>Alves, Nadja Gomes</creatorcontrib><creatorcontrib>Borges, Cleber Nogueira</creatorcontrib><title>Moore–Penrose generalized inverse mixture design applied in low‐density dispersive liquid–liquid microextraction</title><title>Journal of chemometrics</title><description>The modification in the nutritional composition of the ruminant diet causes significant alterations in the fatty acids (FAs) structure supplemented because of the action of rumen microorganisms. The modification in the FAs structure alters the role that these play in the ruminant metabolism. The Folch method is the most often used to determine fatty acids in these animals' tissues and presents certain disadvantages such as the great volume of solvent and low mass transfer from the analyte to the extracting phase. Thus, we tested the low‐density dispersive liquid–liquid microextraction (LD‐DLLME) as an alternative method to determine these substances. In this paper, a simples‐augmented mixture design was used. The Scheffé's polynomial was applied in that design, and Moore–Penrose generalized matrix inverse was used because of the possibility of concurrently determining value estimates of coefficients of the parameters that represent cubic terms. The application of the modeling allowed the chemical interpretation of the LD‐DLLME best extraction condition for linoleic acid in ruminant serum samples. In this paper, we propose the application of Moore–Penrose generalized inverse to determine Scheffé full cubic model and concurrently determine the three coefficients dij. This procedure allows the chemical interpretation of Scheffé's mixture model, making it possible to optimize the LD‐DLLME extraction technique to determine linoleic acid in ruminant serum samples.</description><subject>Animal tissues</subject><subject>blood serum</subject><subject>Density</subject><subject>Design</subject><subject>Design modifications</subject><subject>Dispersion</subject><subject>Fatty acids</subject><subject>Generalized inverse</subject><subject>linoleic acid</subject><subject>Mass transfer</subject><subject>Metabolism</subject><subject>Microorganisms</subject><subject>miniaturized technique</subject><subject>mixture design</subject><subject>Parameter estimation</subject><subject>Polynomials</subject><subject>ruminants</subject><issn>0886-9383</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqUgcYRIbNik-CepnSWqyo_UChYgsbOSeFy5SuPUTkrLqkdA4oY9CW7LltWM5n3zZvQQuiZ4QDCmdyUsBozy9AT1CM6ymFDxcYp6WIhhnDHBztGF93OMg8aSHlpNrXWw2_68Qu2sh2gGNbi8Ml-gIlOvwIXZwqzbzkGkwJtZHeVNU5mDHFX2c7f9VlB7024iZXwTFswKososO6OC77EJFqWzsG5dXrbG1pfoTOeVh6u_2kfvD-O30VM8eXl8Ht1P4pKmSRoXmDJMSUZVhjVnpFBJmRIuhoxTXALFoHTCsaa5LjVoyodYF0JwTkEAKQrWRzdH38bZZQe-lXPbuTqclDQsCoppSgN1e6TCj9470LJxZpG7jSRY7lOVIVW5TzWg8RH9NBVs_uXkaDw98L8woX5j</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Bazzana, Matheus Julien Ferreira</creator><creator>Saczk, Adelir Aparecida</creator><creator>Faria, Letícia Rodrigues</creator><creator>Campos, João Pedro</creator><creator>Alves, Nadja Gomes</creator><creator>Borges, Cleber Nogueira</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9707-2913</orcidid></search><sort><creationdate>202012</creationdate><title>Moore–Penrose generalized inverse mixture design applied in low‐density dispersive liquid–liquid microextraction</title><author>Bazzana, Matheus Julien Ferreira ; Saczk, Adelir Aparecida ; Faria, Letícia Rodrigues ; Campos, João Pedro ; Alves, Nadja Gomes ; Borges, Cleber Nogueira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2545-b02302192d90f731bd4c517863720ce20edf470f2afcfef2760fb88772e8e1bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal tissues</topic><topic>blood serum</topic><topic>Density</topic><topic>Design</topic><topic>Design modifications</topic><topic>Dispersion</topic><topic>Fatty acids</topic><topic>Generalized inverse</topic><topic>linoleic acid</topic><topic>Mass transfer</topic><topic>Metabolism</topic><topic>Microorganisms</topic><topic>miniaturized technique</topic><topic>mixture design</topic><topic>Parameter estimation</topic><topic>Polynomials</topic><topic>ruminants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bazzana, Matheus Julien Ferreira</creatorcontrib><creatorcontrib>Saczk, Adelir Aparecida</creatorcontrib><creatorcontrib>Faria, Letícia Rodrigues</creatorcontrib><creatorcontrib>Campos, João Pedro</creatorcontrib><creatorcontrib>Alves, Nadja Gomes</creatorcontrib><creatorcontrib>Borges, Cleber Nogueira</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bazzana, Matheus Julien Ferreira</au><au>Saczk, Adelir Aparecida</au><au>Faria, Letícia Rodrigues</au><au>Campos, João Pedro</au><au>Alves, Nadja Gomes</au><au>Borges, Cleber Nogueira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moore–Penrose generalized inverse mixture design applied in low‐density dispersive liquid–liquid microextraction</atitle><jtitle>Journal of chemometrics</jtitle><date>2020-12</date><risdate>2020</risdate><volume>34</volume><issue>12</issue><epage>n/a</epage><issn>0886-9383</issn><eissn>1099-128X</eissn><abstract>The modification in the nutritional composition of the ruminant diet causes significant alterations in the fatty acids (FAs) structure supplemented because of the action of rumen microorganisms. The modification in the FAs structure alters the role that these play in the ruminant metabolism. The Folch method is the most often used to determine fatty acids in these animals' tissues and presents certain disadvantages such as the great volume of solvent and low mass transfer from the analyte to the extracting phase. Thus, we tested the low‐density dispersive liquid–liquid microextraction (LD‐DLLME) as an alternative method to determine these substances. In this paper, a simples‐augmented mixture design was used. The Scheffé's polynomial was applied in that design, and Moore–Penrose generalized matrix inverse was used because of the possibility of concurrently determining value estimates of coefficients of the parameters that represent cubic terms. The application of the modeling allowed the chemical interpretation of the LD‐DLLME best extraction condition for linoleic acid in ruminant serum samples. In this paper, we propose the application of Moore–Penrose generalized inverse to determine Scheffé full cubic model and concurrently determine the three coefficients dij. This procedure allows the chemical interpretation of Scheffé's mixture model, making it possible to optimize the LD‐DLLME extraction technique to determine linoleic acid in ruminant serum samples.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cem.3275</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9707-2913</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0886-9383
ispartof Journal of chemometrics, 2020-12, Vol.34 (12), p.n/a
issn 0886-9383
1099-128X
language eng
recordid cdi_proquest_journals_2470820252
source Wiley-Blackwell Read & Publish Collection
subjects Animal tissues
blood serum
Density
Design
Design modifications
Dispersion
Fatty acids
Generalized inverse
linoleic acid
Mass transfer
Metabolism
Microorganisms
miniaturized technique
mixture design
Parameter estimation
Polynomials
ruminants
title Moore–Penrose generalized inverse mixture design applied in low‐density dispersive liquid–liquid microextraction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moore%E2%80%93Penrose%20generalized%20inverse%20mixture%20design%20applied%20in%20low%E2%80%90density%20dispersive%20liquid%E2%80%93liquid%20microextraction&rft.jtitle=Journal%20of%20chemometrics&rft.au=Bazzana,%20Matheus%20Julien%20Ferreira&rft.date=2020-12&rft.volume=34&rft.issue=12&rft.epage=n/a&rft.issn=0886-9383&rft.eissn=1099-128X&rft_id=info:doi/10.1002/cem.3275&rft_dat=%3Cproquest_cross%3E2470820252%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2545-b02302192d90f731bd4c517863720ce20edf470f2afcfef2760fb88772e8e1bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2470820252&rft_id=info:pmid/&rfr_iscdi=true