Loading…
Taking advantages of intramolecular hydrogen bonding to prepare mechanically robust and catalyst-free vitrimer
Fabrication of mechanically robust and catalyst-free vitrimers is of great importance, but often challenging. Herein, a facile strategy to achieve this goal by incorporation of intramolecular hydrogen bonds into the dynamic covalent network is demonstrated. Specifically, glycidyl methacrylate (GMA)...
Saved in:
Published in: | Polymer (Guilford) 2020-12, Vol.210, p.123004, Article 123004 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-7da0f9dfd358b68238bd8be72f2028d63d10be7efcedee982bea5927971ba3913 |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-7da0f9dfd358b68238bd8be72f2028d63d10be7efcedee982bea5927971ba3913 |
container_end_page | |
container_issue | |
container_start_page | 123004 |
container_title | Polymer (Guilford) |
container_volume | 210 |
creator | Wang, Shuaipeng Teng, Na Dai, Jinyue Liu, Jingkai Cao, Lijun Zhao, Weiwei Liu, Xiaoqing |
description | Fabrication of mechanically robust and catalyst-free vitrimers is of great importance, but often challenging. Herein, a facile strategy to achieve this goal by incorporation of intramolecular hydrogen bonds into the dynamic covalent network is demonstrated. Specifically, glycidyl methacrylate (GMA) is reacted with bio-renewable malic acid (MA) to generate a UV-curable resin containing ester linkages. On account of the proximity between the α-carbonyl and β-hydroxyl groups in MA, six-membered-ring intramolecular hydrogen bonds (O-H⋯O=C) are formed in the cross-linked network. This formation of intramolecular hydrogen bonds endows the network with enhanced and outstanding mechanical properties, showing tensile strength and Young's modulus of 117.7 MPa and 3.66 GPa, respectively. Meanwhile, the network is able to efficiently alter its topology without external catalyst through transesterifications reactions at high temperatures. We attributed this phenomenon to the presence of intramolecular hydrogen bonds which make the α-carbonyl carbon more positive and be more reactive towards nucleophilic attack, and thus facilitate the transesterification reaction. This work suggests a promising route to achieve catalyst-free thermosets with superior mechanical performances, good self-healing ability and reprocessability.
[Display omitted]
•Fabricating mechanically robust and catalyst-free vitrimer by incorporating intramolecular H-bonds.•The vitrimer shows tensile strength of 117.7 MPa and Young’s modulus of 3.6 GPa.•Intramolecular H-bonds showed an accelerated effect on transesterification.•A UV-curable monomer is synthesized to achieve the vitrimer material. |
doi_str_mv | 10.1016/j.polymer.2020.123004 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471031842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386120308296</els_id><sourcerecordid>2471031842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-7da0f9dfd358b68238bd8be72f2028d63d10be7efcedee982bea5927971ba3913</originalsourceid><addsrcrecordid>eNqFUE1LAzEQDaJgrf4EIeB5az623exJRPwCwYuew2wyW1O3yZqkhf33ptS7p2Fm3pt57xFyzdmCM7663SzGMExbjAvBRJkJyVh9QmZcNbISouWnZMaYFJVUK35OLlLaMMbEUtQz4j_g2_k1BbsHn2GNiYaeOp8jbMOAZjdApF-TjWGNnnbB2wM6BzpGHCEi3aL5Au8MDMNEY-h2KVPwlhrIMEwpV31EpHuXoysKL8lZD0PCq786J59Pjx8PL9Xb-_Prw_1bZWomc9VYYH1reyuXqlspIVVnVYeN6ItDZVfSclZa7A1axFaJDmHZiqZteAey5XJObo53xxh-dpiy3oRd9OWlFnXDmeSqFgW1PKJMDClF7PVYVEKcNGf6EK3e6L9o9SFafYy28O6OPCwW9q5sk3HoixgX0WRtg_vnwi86-4fZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471031842</pqid></control><display><type>article</type><title>Taking advantages of intramolecular hydrogen bonding to prepare mechanically robust and catalyst-free vitrimer</title><source>ScienceDirect Journals</source><creator>Wang, Shuaipeng ; Teng, Na ; Dai, Jinyue ; Liu, Jingkai ; Cao, Lijun ; Zhao, Weiwei ; Liu, Xiaoqing</creator><creatorcontrib>Wang, Shuaipeng ; Teng, Na ; Dai, Jinyue ; Liu, Jingkai ; Cao, Lijun ; Zhao, Weiwei ; Liu, Xiaoqing</creatorcontrib><description>Fabrication of mechanically robust and catalyst-free vitrimers is of great importance, but often challenging. Herein, a facile strategy to achieve this goal by incorporation of intramolecular hydrogen bonds into the dynamic covalent network is demonstrated. Specifically, glycidyl methacrylate (GMA) is reacted with bio-renewable malic acid (MA) to generate a UV-curable resin containing ester linkages. On account of the proximity between the α-carbonyl and β-hydroxyl groups in MA, six-membered-ring intramolecular hydrogen bonds (O-H⋯O=C) are formed in the cross-linked network. This formation of intramolecular hydrogen bonds endows the network with enhanced and outstanding mechanical properties, showing tensile strength and Young's modulus of 117.7 MPa and 3.66 GPa, respectively. Meanwhile, the network is able to efficiently alter its topology without external catalyst through transesterifications reactions at high temperatures. We attributed this phenomenon to the presence of intramolecular hydrogen bonds which make the α-carbonyl carbon more positive and be more reactive towards nucleophilic attack, and thus facilitate the transesterification reaction. This work suggests a promising route to achieve catalyst-free thermosets with superior mechanical performances, good self-healing ability and reprocessability.
[Display omitted]
•Fabricating mechanically robust and catalyst-free vitrimer by incorporating intramolecular H-bonds.•The vitrimer shows tensile strength of 117.7 MPa and Young’s modulus of 3.6 GPa.•Intramolecular H-bonds showed an accelerated effect on transesterification.•A UV-curable monomer is synthesized to achieve the vitrimer material.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2020.123004</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Carbonyl compounds ; Carbonyls ; Catalyst-free ; Catalysts ; Fabrication ; High temperature ; Hydrogen ; Hydrogen bonding ; Hydrogen bonds ; Hydroxyl groups ; Intramolecular hydrogen bonds ; Malic acid ; Mechanical properties ; Modulus of elasticity ; Robustness ; Tensile strength ; Topology ; Transesterification ; Ultraviolet radiation ; UV-Curable ; Vitrimers</subject><ispartof>Polymer (Guilford), 2020-12, Vol.210, p.123004, Article 123004</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-7da0f9dfd358b68238bd8be72f2028d63d10be7efcedee982bea5927971ba3913</citedby><cites>FETCH-LOGICAL-c403t-7da0f9dfd358b68238bd8be72f2028d63d10be7efcedee982bea5927971ba3913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wang, Shuaipeng</creatorcontrib><creatorcontrib>Teng, Na</creatorcontrib><creatorcontrib>Dai, Jinyue</creatorcontrib><creatorcontrib>Liu, Jingkai</creatorcontrib><creatorcontrib>Cao, Lijun</creatorcontrib><creatorcontrib>Zhao, Weiwei</creatorcontrib><creatorcontrib>Liu, Xiaoqing</creatorcontrib><title>Taking advantages of intramolecular hydrogen bonding to prepare mechanically robust and catalyst-free vitrimer</title><title>Polymer (Guilford)</title><description>Fabrication of mechanically robust and catalyst-free vitrimers is of great importance, but often challenging. Herein, a facile strategy to achieve this goal by incorporation of intramolecular hydrogen bonds into the dynamic covalent network is demonstrated. Specifically, glycidyl methacrylate (GMA) is reacted with bio-renewable malic acid (MA) to generate a UV-curable resin containing ester linkages. On account of the proximity between the α-carbonyl and β-hydroxyl groups in MA, six-membered-ring intramolecular hydrogen bonds (O-H⋯O=C) are formed in the cross-linked network. This formation of intramolecular hydrogen bonds endows the network with enhanced and outstanding mechanical properties, showing tensile strength and Young's modulus of 117.7 MPa and 3.66 GPa, respectively. Meanwhile, the network is able to efficiently alter its topology without external catalyst through transesterifications reactions at high temperatures. We attributed this phenomenon to the presence of intramolecular hydrogen bonds which make the α-carbonyl carbon more positive and be more reactive towards nucleophilic attack, and thus facilitate the transesterification reaction. This work suggests a promising route to achieve catalyst-free thermosets with superior mechanical performances, good self-healing ability and reprocessability.
[Display omitted]
•Fabricating mechanically robust and catalyst-free vitrimer by incorporating intramolecular H-bonds.•The vitrimer shows tensile strength of 117.7 MPa and Young’s modulus of 3.6 GPa.•Intramolecular H-bonds showed an accelerated effect on transesterification.•A UV-curable monomer is synthesized to achieve the vitrimer material.</description><subject>Carbonyl compounds</subject><subject>Carbonyls</subject><subject>Catalyst-free</subject><subject>Catalysts</subject><subject>Fabrication</subject><subject>High temperature</subject><subject>Hydrogen</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Hydroxyl groups</subject><subject>Intramolecular hydrogen bonds</subject><subject>Malic acid</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Robustness</subject><subject>Tensile strength</subject><subject>Topology</subject><subject>Transesterification</subject><subject>Ultraviolet radiation</subject><subject>UV-Curable</subject><subject>Vitrimers</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEQDaJgrf4EIeB5az623exJRPwCwYuew2wyW1O3yZqkhf33ptS7p2Fm3pt57xFyzdmCM7663SzGMExbjAvBRJkJyVh9QmZcNbISouWnZMaYFJVUK35OLlLaMMbEUtQz4j_g2_k1BbsHn2GNiYaeOp8jbMOAZjdApF-TjWGNnnbB2wM6BzpGHCEi3aL5Au8MDMNEY-h2KVPwlhrIMEwpV31EpHuXoysKL8lZD0PCq786J59Pjx8PL9Xb-_Prw_1bZWomc9VYYH1reyuXqlspIVVnVYeN6ItDZVfSclZa7A1axFaJDmHZiqZteAey5XJObo53xxh-dpiy3oRd9OWlFnXDmeSqFgW1PKJMDClF7PVYVEKcNGf6EK3e6L9o9SFafYy28O6OPCwW9q5sk3HoixgX0WRtg_vnwi86-4fZ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Wang, Shuaipeng</creator><creator>Teng, Na</creator><creator>Dai, Jinyue</creator><creator>Liu, Jingkai</creator><creator>Cao, Lijun</creator><creator>Zhao, Weiwei</creator><creator>Liu, Xiaoqing</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20201201</creationdate><title>Taking advantages of intramolecular hydrogen bonding to prepare mechanically robust and catalyst-free vitrimer</title><author>Wang, Shuaipeng ; Teng, Na ; Dai, Jinyue ; Liu, Jingkai ; Cao, Lijun ; Zhao, Weiwei ; Liu, Xiaoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-7da0f9dfd358b68238bd8be72f2028d63d10be7efcedee982bea5927971ba3913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbonyl compounds</topic><topic>Carbonyls</topic><topic>Catalyst-free</topic><topic>Catalysts</topic><topic>Fabrication</topic><topic>High temperature</topic><topic>Hydrogen</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Hydroxyl groups</topic><topic>Intramolecular hydrogen bonds</topic><topic>Malic acid</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Robustness</topic><topic>Tensile strength</topic><topic>Topology</topic><topic>Transesterification</topic><topic>Ultraviolet radiation</topic><topic>UV-Curable</topic><topic>Vitrimers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shuaipeng</creatorcontrib><creatorcontrib>Teng, Na</creatorcontrib><creatorcontrib>Dai, Jinyue</creatorcontrib><creatorcontrib>Liu, Jingkai</creatorcontrib><creatorcontrib>Cao, Lijun</creatorcontrib><creatorcontrib>Zhao, Weiwei</creatorcontrib><creatorcontrib>Liu, Xiaoqing</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shuaipeng</au><au>Teng, Na</au><au>Dai, Jinyue</au><au>Liu, Jingkai</au><au>Cao, Lijun</au><au>Zhao, Weiwei</au><au>Liu, Xiaoqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Taking advantages of intramolecular hydrogen bonding to prepare mechanically robust and catalyst-free vitrimer</atitle><jtitle>Polymer (Guilford)</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>210</volume><spage>123004</spage><pages>123004-</pages><artnum>123004</artnum><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>Fabrication of mechanically robust and catalyst-free vitrimers is of great importance, but often challenging. Herein, a facile strategy to achieve this goal by incorporation of intramolecular hydrogen bonds into the dynamic covalent network is demonstrated. Specifically, glycidyl methacrylate (GMA) is reacted with bio-renewable malic acid (MA) to generate a UV-curable resin containing ester linkages. On account of the proximity between the α-carbonyl and β-hydroxyl groups in MA, six-membered-ring intramolecular hydrogen bonds (O-H⋯O=C) are formed in the cross-linked network. This formation of intramolecular hydrogen bonds endows the network with enhanced and outstanding mechanical properties, showing tensile strength and Young's modulus of 117.7 MPa and 3.66 GPa, respectively. Meanwhile, the network is able to efficiently alter its topology without external catalyst through transesterifications reactions at high temperatures. We attributed this phenomenon to the presence of intramolecular hydrogen bonds which make the α-carbonyl carbon more positive and be more reactive towards nucleophilic attack, and thus facilitate the transesterification reaction. This work suggests a promising route to achieve catalyst-free thermosets with superior mechanical performances, good self-healing ability and reprocessability.
[Display omitted]
•Fabricating mechanically robust and catalyst-free vitrimer by incorporating intramolecular H-bonds.•The vitrimer shows tensile strength of 117.7 MPa and Young’s modulus of 3.6 GPa.•Intramolecular H-bonds showed an accelerated effect on transesterification.•A UV-curable monomer is synthesized to achieve the vitrimer material.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2020.123004</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 2020-12, Vol.210, p.123004, Article 123004 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_proquest_journals_2471031842 |
source | ScienceDirect Journals |
subjects | Carbonyl compounds Carbonyls Catalyst-free Catalysts Fabrication High temperature Hydrogen Hydrogen bonding Hydrogen bonds Hydroxyl groups Intramolecular hydrogen bonds Malic acid Mechanical properties Modulus of elasticity Robustness Tensile strength Topology Transesterification Ultraviolet radiation UV-Curable Vitrimers |
title | Taking advantages of intramolecular hydrogen bonding to prepare mechanically robust and catalyst-free vitrimer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A12%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Taking%20advantages%20of%20intramolecular%20hydrogen%20bonding%20to%20prepare%20mechanically%20robust%20and%20catalyst-free%20vitrimer&rft.jtitle=Polymer%20(Guilford)&rft.au=Wang,%20Shuaipeng&rft.date=2020-12-01&rft.volume=210&rft.spage=123004&rft.pages=123004-&rft.artnum=123004&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2020.123004&rft_dat=%3Cproquest_cross%3E2471031842%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-7da0f9dfd358b68238bd8be72f2028d63d10be7efcedee982bea5927971ba3913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471031842&rft_id=info:pmid/&rfr_iscdi=true |