Loading…

Taking advantages of intramolecular hydrogen bonding to prepare mechanically robust and catalyst-free vitrimer

Fabrication of mechanically robust and catalyst-free vitrimers is of great importance, but often challenging. Herein, a facile strategy to achieve this goal by incorporation of intramolecular hydrogen bonds into the dynamic covalent network is demonstrated. Specifically, glycidyl methacrylate (GMA)...

Full description

Saved in:
Bibliographic Details
Published in:Polymer (Guilford) 2020-12, Vol.210, p.123004, Article 123004
Main Authors: Wang, Shuaipeng, Teng, Na, Dai, Jinyue, Liu, Jingkai, Cao, Lijun, Zhao, Weiwei, Liu, Xiaoqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-7da0f9dfd358b68238bd8be72f2028d63d10be7efcedee982bea5927971ba3913
cites cdi_FETCH-LOGICAL-c403t-7da0f9dfd358b68238bd8be72f2028d63d10be7efcedee982bea5927971ba3913
container_end_page
container_issue
container_start_page 123004
container_title Polymer (Guilford)
container_volume 210
creator Wang, Shuaipeng
Teng, Na
Dai, Jinyue
Liu, Jingkai
Cao, Lijun
Zhao, Weiwei
Liu, Xiaoqing
description Fabrication of mechanically robust and catalyst-free vitrimers is of great importance, but often challenging. Herein, a facile strategy to achieve this goal by incorporation of intramolecular hydrogen bonds into the dynamic covalent network is demonstrated. Specifically, glycidyl methacrylate (GMA) is reacted with bio-renewable malic acid (MA) to generate a UV-curable resin containing ester linkages. On account of the proximity between the α-carbonyl and β-hydroxyl groups in MA, six-membered-ring intramolecular hydrogen bonds (O-H⋯O=C) are formed in the cross-linked network. This formation of intramolecular hydrogen bonds endows the network with enhanced and outstanding mechanical properties, showing tensile strength and Young's modulus of 117.7 MPa and 3.66 GPa, respectively. Meanwhile, the network is able to efficiently alter its topology without external catalyst through transesterifications reactions at high temperatures. We attributed this phenomenon to the presence of intramolecular hydrogen bonds which make the α-carbonyl carbon more positive and be more reactive towards nucleophilic attack, and thus facilitate the transesterification reaction. This work suggests a promising route to achieve catalyst-free thermosets with superior mechanical performances, good self-healing ability and reprocessability. [Display omitted] •Fabricating mechanically robust and catalyst-free vitrimer by incorporating intramolecular H-bonds.•The vitrimer shows tensile strength of 117.7 MPa and Young’s modulus of 3.6 GPa.•Intramolecular H-bonds showed an accelerated effect on transesterification.•A UV-curable monomer is synthesized to achieve the vitrimer material.
doi_str_mv 10.1016/j.polymer.2020.123004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471031842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386120308296</els_id><sourcerecordid>2471031842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-7da0f9dfd358b68238bd8be72f2028d63d10be7efcedee982bea5927971ba3913</originalsourceid><addsrcrecordid>eNqFUE1LAzEQDaJgrf4EIeB5az623exJRPwCwYuew2wyW1O3yZqkhf33ptS7p2Fm3pt57xFyzdmCM7663SzGMExbjAvBRJkJyVh9QmZcNbISouWnZMaYFJVUK35OLlLaMMbEUtQz4j_g2_k1BbsHn2GNiYaeOp8jbMOAZjdApF-TjWGNnnbB2wM6BzpGHCEi3aL5Au8MDMNEY-h2KVPwlhrIMEwpV31EpHuXoysKL8lZD0PCq786J59Pjx8PL9Xb-_Prw_1bZWomc9VYYH1reyuXqlspIVVnVYeN6ItDZVfSclZa7A1axFaJDmHZiqZteAey5XJObo53xxh-dpiy3oRd9OWlFnXDmeSqFgW1PKJMDClF7PVYVEKcNGf6EK3e6L9o9SFafYy28O6OPCwW9q5sk3HoixgX0WRtg_vnwi86-4fZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471031842</pqid></control><display><type>article</type><title>Taking advantages of intramolecular hydrogen bonding to prepare mechanically robust and catalyst-free vitrimer</title><source>ScienceDirect Journals</source><creator>Wang, Shuaipeng ; Teng, Na ; Dai, Jinyue ; Liu, Jingkai ; Cao, Lijun ; Zhao, Weiwei ; Liu, Xiaoqing</creator><creatorcontrib>Wang, Shuaipeng ; Teng, Na ; Dai, Jinyue ; Liu, Jingkai ; Cao, Lijun ; Zhao, Weiwei ; Liu, Xiaoqing</creatorcontrib><description>Fabrication of mechanically robust and catalyst-free vitrimers is of great importance, but often challenging. Herein, a facile strategy to achieve this goal by incorporation of intramolecular hydrogen bonds into the dynamic covalent network is demonstrated. Specifically, glycidyl methacrylate (GMA) is reacted with bio-renewable malic acid (MA) to generate a UV-curable resin containing ester linkages. On account of the proximity between the α-carbonyl and β-hydroxyl groups in MA, six-membered-ring intramolecular hydrogen bonds (O-H⋯O=C) are formed in the cross-linked network. This formation of intramolecular hydrogen bonds endows the network with enhanced and outstanding mechanical properties, showing tensile strength and Young's modulus of 117.7 MPa and 3.66 GPa, respectively. Meanwhile, the network is able to efficiently alter its topology without external catalyst through transesterifications reactions at high temperatures. We attributed this phenomenon to the presence of intramolecular hydrogen bonds which make the α-carbonyl carbon more positive and be more reactive towards nucleophilic attack, and thus facilitate the transesterification reaction. This work suggests a promising route to achieve catalyst-free thermosets with superior mechanical performances, good self-healing ability and reprocessability. [Display omitted] •Fabricating mechanically robust and catalyst-free vitrimer by incorporating intramolecular H-bonds.•The vitrimer shows tensile strength of 117.7 MPa and Young’s modulus of 3.6 GPa.•Intramolecular H-bonds showed an accelerated effect on transesterification.•A UV-curable monomer is synthesized to achieve the vitrimer material.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2020.123004</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Carbonyl compounds ; Carbonyls ; Catalyst-free ; Catalysts ; Fabrication ; High temperature ; Hydrogen ; Hydrogen bonding ; Hydrogen bonds ; Hydroxyl groups ; Intramolecular hydrogen bonds ; Malic acid ; Mechanical properties ; Modulus of elasticity ; Robustness ; Tensile strength ; Topology ; Transesterification ; Ultraviolet radiation ; UV-Curable ; Vitrimers</subject><ispartof>Polymer (Guilford), 2020-12, Vol.210, p.123004, Article 123004</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-7da0f9dfd358b68238bd8be72f2028d63d10be7efcedee982bea5927971ba3913</citedby><cites>FETCH-LOGICAL-c403t-7da0f9dfd358b68238bd8be72f2028d63d10be7efcedee982bea5927971ba3913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wang, Shuaipeng</creatorcontrib><creatorcontrib>Teng, Na</creatorcontrib><creatorcontrib>Dai, Jinyue</creatorcontrib><creatorcontrib>Liu, Jingkai</creatorcontrib><creatorcontrib>Cao, Lijun</creatorcontrib><creatorcontrib>Zhao, Weiwei</creatorcontrib><creatorcontrib>Liu, Xiaoqing</creatorcontrib><title>Taking advantages of intramolecular hydrogen bonding to prepare mechanically robust and catalyst-free vitrimer</title><title>Polymer (Guilford)</title><description>Fabrication of mechanically robust and catalyst-free vitrimers is of great importance, but often challenging. Herein, a facile strategy to achieve this goal by incorporation of intramolecular hydrogen bonds into the dynamic covalent network is demonstrated. Specifically, glycidyl methacrylate (GMA) is reacted with bio-renewable malic acid (MA) to generate a UV-curable resin containing ester linkages. On account of the proximity between the α-carbonyl and β-hydroxyl groups in MA, six-membered-ring intramolecular hydrogen bonds (O-H⋯O=C) are formed in the cross-linked network. This formation of intramolecular hydrogen bonds endows the network with enhanced and outstanding mechanical properties, showing tensile strength and Young's modulus of 117.7 MPa and 3.66 GPa, respectively. Meanwhile, the network is able to efficiently alter its topology without external catalyst through transesterifications reactions at high temperatures. We attributed this phenomenon to the presence of intramolecular hydrogen bonds which make the α-carbonyl carbon more positive and be more reactive towards nucleophilic attack, and thus facilitate the transesterification reaction. This work suggests a promising route to achieve catalyst-free thermosets with superior mechanical performances, good self-healing ability and reprocessability. [Display omitted] •Fabricating mechanically robust and catalyst-free vitrimer by incorporating intramolecular H-bonds.•The vitrimer shows tensile strength of 117.7 MPa and Young’s modulus of 3.6 GPa.•Intramolecular H-bonds showed an accelerated effect on transesterification.•A UV-curable monomer is synthesized to achieve the vitrimer material.</description><subject>Carbonyl compounds</subject><subject>Carbonyls</subject><subject>Catalyst-free</subject><subject>Catalysts</subject><subject>Fabrication</subject><subject>High temperature</subject><subject>Hydrogen</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Hydroxyl groups</subject><subject>Intramolecular hydrogen bonds</subject><subject>Malic acid</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Robustness</subject><subject>Tensile strength</subject><subject>Topology</subject><subject>Transesterification</subject><subject>Ultraviolet radiation</subject><subject>UV-Curable</subject><subject>Vitrimers</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEQDaJgrf4EIeB5az623exJRPwCwYuew2wyW1O3yZqkhf33ptS7p2Fm3pt57xFyzdmCM7663SzGMExbjAvBRJkJyVh9QmZcNbISouWnZMaYFJVUK35OLlLaMMbEUtQz4j_g2_k1BbsHn2GNiYaeOp8jbMOAZjdApF-TjWGNnnbB2wM6BzpGHCEi3aL5Au8MDMNEY-h2KVPwlhrIMEwpV31EpHuXoysKL8lZD0PCq786J59Pjx8PL9Xb-_Prw_1bZWomc9VYYH1reyuXqlspIVVnVYeN6ItDZVfSclZa7A1axFaJDmHZiqZteAey5XJObo53xxh-dpiy3oRd9OWlFnXDmeSqFgW1PKJMDClF7PVYVEKcNGf6EK3e6L9o9SFafYy28O6OPCwW9q5sk3HoixgX0WRtg_vnwi86-4fZ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Wang, Shuaipeng</creator><creator>Teng, Na</creator><creator>Dai, Jinyue</creator><creator>Liu, Jingkai</creator><creator>Cao, Lijun</creator><creator>Zhao, Weiwei</creator><creator>Liu, Xiaoqing</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20201201</creationdate><title>Taking advantages of intramolecular hydrogen bonding to prepare mechanically robust and catalyst-free vitrimer</title><author>Wang, Shuaipeng ; Teng, Na ; Dai, Jinyue ; Liu, Jingkai ; Cao, Lijun ; Zhao, Weiwei ; Liu, Xiaoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-7da0f9dfd358b68238bd8be72f2028d63d10be7efcedee982bea5927971ba3913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbonyl compounds</topic><topic>Carbonyls</topic><topic>Catalyst-free</topic><topic>Catalysts</topic><topic>Fabrication</topic><topic>High temperature</topic><topic>Hydrogen</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Hydroxyl groups</topic><topic>Intramolecular hydrogen bonds</topic><topic>Malic acid</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Robustness</topic><topic>Tensile strength</topic><topic>Topology</topic><topic>Transesterification</topic><topic>Ultraviolet radiation</topic><topic>UV-Curable</topic><topic>Vitrimers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shuaipeng</creatorcontrib><creatorcontrib>Teng, Na</creatorcontrib><creatorcontrib>Dai, Jinyue</creatorcontrib><creatorcontrib>Liu, Jingkai</creatorcontrib><creatorcontrib>Cao, Lijun</creatorcontrib><creatorcontrib>Zhao, Weiwei</creatorcontrib><creatorcontrib>Liu, Xiaoqing</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shuaipeng</au><au>Teng, Na</au><au>Dai, Jinyue</au><au>Liu, Jingkai</au><au>Cao, Lijun</au><au>Zhao, Weiwei</au><au>Liu, Xiaoqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Taking advantages of intramolecular hydrogen bonding to prepare mechanically robust and catalyst-free vitrimer</atitle><jtitle>Polymer (Guilford)</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>210</volume><spage>123004</spage><pages>123004-</pages><artnum>123004</artnum><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>Fabrication of mechanically robust and catalyst-free vitrimers is of great importance, but often challenging. Herein, a facile strategy to achieve this goal by incorporation of intramolecular hydrogen bonds into the dynamic covalent network is demonstrated. Specifically, glycidyl methacrylate (GMA) is reacted with bio-renewable malic acid (MA) to generate a UV-curable resin containing ester linkages. On account of the proximity between the α-carbonyl and β-hydroxyl groups in MA, six-membered-ring intramolecular hydrogen bonds (O-H⋯O=C) are formed in the cross-linked network. This formation of intramolecular hydrogen bonds endows the network with enhanced and outstanding mechanical properties, showing tensile strength and Young's modulus of 117.7 MPa and 3.66 GPa, respectively. Meanwhile, the network is able to efficiently alter its topology without external catalyst through transesterifications reactions at high temperatures. We attributed this phenomenon to the presence of intramolecular hydrogen bonds which make the α-carbonyl carbon more positive and be more reactive towards nucleophilic attack, and thus facilitate the transesterification reaction. This work suggests a promising route to achieve catalyst-free thermosets with superior mechanical performances, good self-healing ability and reprocessability. [Display omitted] •Fabricating mechanically robust and catalyst-free vitrimer by incorporating intramolecular H-bonds.•The vitrimer shows tensile strength of 117.7 MPa and Young’s modulus of 3.6 GPa.•Intramolecular H-bonds showed an accelerated effect on transesterification.•A UV-curable monomer is synthesized to achieve the vitrimer material.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2020.123004</doi></addata></record>
fulltext fulltext
identifier ISSN: 0032-3861
ispartof Polymer (Guilford), 2020-12, Vol.210, p.123004, Article 123004
issn 0032-3861
1873-2291
language eng
recordid cdi_proquest_journals_2471031842
source ScienceDirect Journals
subjects Carbonyl compounds
Carbonyls
Catalyst-free
Catalysts
Fabrication
High temperature
Hydrogen
Hydrogen bonding
Hydrogen bonds
Hydroxyl groups
Intramolecular hydrogen bonds
Malic acid
Mechanical properties
Modulus of elasticity
Robustness
Tensile strength
Topology
Transesterification
Ultraviolet radiation
UV-Curable
Vitrimers
title Taking advantages of intramolecular hydrogen bonding to prepare mechanically robust and catalyst-free vitrimer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A12%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Taking%20advantages%20of%20intramolecular%20hydrogen%20bonding%20to%20prepare%20mechanically%20robust%20and%20catalyst-free%20vitrimer&rft.jtitle=Polymer%20(Guilford)&rft.au=Wang,%20Shuaipeng&rft.date=2020-12-01&rft.volume=210&rft.spage=123004&rft.pages=123004-&rft.artnum=123004&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2020.123004&rft_dat=%3Cproquest_cross%3E2471031842%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-7da0f9dfd358b68238bd8be72f2028d63d10be7efcedee982bea5927971ba3913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471031842&rft_id=info:pmid/&rfr_iscdi=true