Loading…
Flexible Sensitivity Analysis for Observational Studies Without Observable Implications
A fundamental challenge in observational causal inference is that assumptions about unconfoundedness are not testable from data. Assessing sensitivity to such assumptions is therefore important in practice. Unfortunately, some existing sensitivity analysis approaches inadvertently impose restriction...
Saved in:
Published in: | Journal of the American Statistical Association 2020-12, Vol.115 (532), p.1730-1746 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-9c9a5da559b9f003dbe010f6888af1fe0bf9b2ed0e5f47953a5c6b07e63bf5783 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-9c9a5da559b9f003dbe010f6888af1fe0bf9b2ed0e5f47953a5c6b07e63bf5783 |
container_end_page | 1746 |
container_issue | 532 |
container_start_page | 1730 |
container_title | Journal of the American Statistical Association |
container_volume | 115 |
creator | Franks, AlexanderM D'Amour, Alexander Feller, Avi |
description | A fundamental challenge in observational causal inference is that assumptions about unconfoundedness are not testable from data. Assessing sensitivity to such assumptions is therefore important in practice. Unfortunately, some existing sensitivity analysis approaches inadvertently impose restrictions that are at odds with modern causal inference methods, which emphasize flexible models for observed data. To address this issue, we propose a framework that allows (1) flexible models for the observed data and (2) clean separation of the identified and unidentified parts of the sensitivity model. Our framework extends an approach from the missing data literature, known as Tukey's factorization, to the causal inference setting. Under this factorization, we can represent the distributions of unobserved potential outcomes in terms of unidentified selection functions that posit a relationship between treatment assignment and unobserved potential outcomes. The sensitivity parameters in this framework are easily interpreted, and we provide heuristics for calibrating these parameters against observable quantities. We demonstrate the flexibility of this approach in two examples, where we estimate both average treatment effects and quantile treatment effects using Bayesian nonparametric models for the observed data. |
doi_str_mv | 10.1080/01621459.2019.1604369 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471143910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471143910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-9c9a5da559b9f003dbe010f6888af1fe0bf9b2ed0e5f47953a5c6b07e63bf5783</originalsourceid><addsrcrecordid>eNp9kFFLwzAQx4MoOKcfQSj43HlpmjZ5cwyng8Eepsy3kLQJZnTtTNJpv72t2169l4O73_05fgjdY5hgYPAIOEtwSvkkAcwnOIOUZPwCjTAleZzk6cclGg1MPEDX6Mb7LfSVMzZCm3mlf6yqdLTWtbfBHmzoomktq85bH5nGRSvltTvIYJt-Gq1DW1rto40Nn00bztshYbHbV7b4A_0tujKy8vru1Mfoff78NnuNl6uXxWy6jIsUsxDzgktaSkq54gaAlEoDBpMxxqTBRoMyXCW6BE1NmnNKJC0yBbnOiDI0Z2SMHo65e9d8tdoHsW1a1z_qRZLmGKeEY-gpeqQK13jvtBF7Z3fSdQKDGByKs0MxOBQnh_3d0_HO1r2JnfxuXFWKILuqccbJurBekP8jfgGq0HoP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471143910</pqid></control><display><type>article</type><title>Flexible Sensitivity Analysis for Observational Studies Without Observable Implications</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Taylor and Francis Science and Technology Collection</source><creator>Franks, AlexanderM ; D'Amour, Alexander ; Feller, Avi</creator><creatorcontrib>Franks, AlexanderM ; D'Amour, Alexander ; Feller, Avi</creatorcontrib><description>A fundamental challenge in observational causal inference is that assumptions about unconfoundedness are not testable from data. Assessing sensitivity to such assumptions is therefore important in practice. Unfortunately, some existing sensitivity analysis approaches inadvertently impose restrictions that are at odds with modern causal inference methods, which emphasize flexible models for observed data. To address this issue, we propose a framework that allows (1) flexible models for the observed data and (2) clean separation of the identified and unidentified parts of the sensitivity model. Our framework extends an approach from the missing data literature, known as Tukey's factorization, to the causal inference setting. Under this factorization, we can represent the distributions of unobserved potential outcomes in terms of unidentified selection functions that posit a relationship between treatment assignment and unobserved potential outcomes. The sensitivity parameters in this framework are easily interpreted, and we provide heuristics for calibrating these parameters against observable quantities. We demonstrate the flexibility of this approach in two examples, where we estimate both average treatment effects and quantile treatment effects using Bayesian nonparametric models for the observed data.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2019.1604369</identifier><language>eng</language><publisher>Alexandria: Taylor & Francis</publisher><subject>Bayesian analysis ; Bayesian inference ; Factorization ; Flexibility ; Heuristic ; Inference ; Latent confounder ; Mathematical models ; Missing data ; Observational studies ; Parameter sensitivity ; Regression analysis ; Sensitivity analysis ; Statistical methods ; Statistics ; Tukey's factorization</subject><ispartof>Journal of the American Statistical Association, 2020-12, Vol.115 (532), p.1730-1746</ispartof><rights>2019 American Statistical Association 2019</rights><rights>2019 American Statistical Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-9c9a5da559b9f003dbe010f6888af1fe0bf9b2ed0e5f47953a5c6b07e63bf5783</citedby><cites>FETCH-LOGICAL-c418t-9c9a5da559b9f003dbe010f6888af1fe0bf9b2ed0e5f47953a5c6b07e63bf5783</cites><orcidid>0000-0002-9329-206X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223</link.rule.ids></links><search><creatorcontrib>Franks, AlexanderM</creatorcontrib><creatorcontrib>D'Amour, Alexander</creatorcontrib><creatorcontrib>Feller, Avi</creatorcontrib><title>Flexible Sensitivity Analysis for Observational Studies Without Observable Implications</title><title>Journal of the American Statistical Association</title><description>A fundamental challenge in observational causal inference is that assumptions about unconfoundedness are not testable from data. Assessing sensitivity to such assumptions is therefore important in practice. Unfortunately, some existing sensitivity analysis approaches inadvertently impose restrictions that are at odds with modern causal inference methods, which emphasize flexible models for observed data. To address this issue, we propose a framework that allows (1) flexible models for the observed data and (2) clean separation of the identified and unidentified parts of the sensitivity model. Our framework extends an approach from the missing data literature, known as Tukey's factorization, to the causal inference setting. Under this factorization, we can represent the distributions of unobserved potential outcomes in terms of unidentified selection functions that posit a relationship between treatment assignment and unobserved potential outcomes. The sensitivity parameters in this framework are easily interpreted, and we provide heuristics for calibrating these parameters against observable quantities. We demonstrate the flexibility of this approach in two examples, where we estimate both average treatment effects and quantile treatment effects using Bayesian nonparametric models for the observed data.</description><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Factorization</subject><subject>Flexibility</subject><subject>Heuristic</subject><subject>Inference</subject><subject>Latent confounder</subject><subject>Mathematical models</subject><subject>Missing data</subject><subject>Observational studies</subject><subject>Parameter sensitivity</subject><subject>Regression analysis</subject><subject>Sensitivity analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Tukey's factorization</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp9kFFLwzAQx4MoOKcfQSj43HlpmjZ5cwyng8Eepsy3kLQJZnTtTNJpv72t2169l4O73_05fgjdY5hgYPAIOEtwSvkkAcwnOIOUZPwCjTAleZzk6cclGg1MPEDX6Mb7LfSVMzZCm3mlf6yqdLTWtbfBHmzoomktq85bH5nGRSvltTvIYJt-Gq1DW1rto40Nn00bztshYbHbV7b4A_0tujKy8vru1Mfoff78NnuNl6uXxWy6jIsUsxDzgktaSkq54gaAlEoDBpMxxqTBRoMyXCW6BE1NmnNKJC0yBbnOiDI0Z2SMHo65e9d8tdoHsW1a1z_qRZLmGKeEY-gpeqQK13jvtBF7Z3fSdQKDGByKs0MxOBQnh_3d0_HO1r2JnfxuXFWKILuqccbJurBekP8jfgGq0HoP</recordid><startdate>20201211</startdate><enddate>20201211</enddate><creator>Franks, AlexanderM</creator><creator>D'Amour, Alexander</creator><creator>Feller, Avi</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-9329-206X</orcidid></search><sort><creationdate>20201211</creationdate><title>Flexible Sensitivity Analysis for Observational Studies Without Observable Implications</title><author>Franks, AlexanderM ; D'Amour, Alexander ; Feller, Avi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-9c9a5da559b9f003dbe010f6888af1fe0bf9b2ed0e5f47953a5c6b07e63bf5783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Factorization</topic><topic>Flexibility</topic><topic>Heuristic</topic><topic>Inference</topic><topic>Latent confounder</topic><topic>Mathematical models</topic><topic>Missing data</topic><topic>Observational studies</topic><topic>Parameter sensitivity</topic><topic>Regression analysis</topic><topic>Sensitivity analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Tukey's factorization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franks, AlexanderM</creatorcontrib><creatorcontrib>D'Amour, Alexander</creatorcontrib><creatorcontrib>Feller, Avi</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franks, AlexanderM</au><au>D'Amour, Alexander</au><au>Feller, Avi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible Sensitivity Analysis for Observational Studies Without Observable Implications</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2020-12-11</date><risdate>2020</risdate><volume>115</volume><issue>532</issue><spage>1730</spage><epage>1746</epage><pages>1730-1746</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>A fundamental challenge in observational causal inference is that assumptions about unconfoundedness are not testable from data. Assessing sensitivity to such assumptions is therefore important in practice. Unfortunately, some existing sensitivity analysis approaches inadvertently impose restrictions that are at odds with modern causal inference methods, which emphasize flexible models for observed data. To address this issue, we propose a framework that allows (1) flexible models for the observed data and (2) clean separation of the identified and unidentified parts of the sensitivity model. Our framework extends an approach from the missing data literature, known as Tukey's factorization, to the causal inference setting. Under this factorization, we can represent the distributions of unobserved potential outcomes in terms of unidentified selection functions that posit a relationship between treatment assignment and unobserved potential outcomes. The sensitivity parameters in this framework are easily interpreted, and we provide heuristics for calibrating these parameters against observable quantities. We demonstrate the flexibility of this approach in two examples, where we estimate both average treatment effects and quantile treatment effects using Bayesian nonparametric models for the observed data.</abstract><cop>Alexandria</cop><pub>Taylor & Francis</pub><doi>10.1080/01621459.2019.1604369</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9329-206X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 2020-12, Vol.115 (532), p.1730-1746 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_proquest_journals_2471143910 |
source | International Bibliography of the Social Sciences (IBSS); Taylor and Francis Science and Technology Collection |
subjects | Bayesian analysis Bayesian inference Factorization Flexibility Heuristic Inference Latent confounder Mathematical models Missing data Observational studies Parameter sensitivity Regression analysis Sensitivity analysis Statistical methods Statistics Tukey's factorization |
title | Flexible Sensitivity Analysis for Observational Studies Without Observable Implications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A09%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20Sensitivity%20Analysis%20for%20Observational%20Studies%20Without%20Observable%20Implications&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Franks,%20AlexanderM&rft.date=2020-12-11&rft.volume=115&rft.issue=532&rft.spage=1730&rft.epage=1746&rft.pages=1730-1746&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.2019.1604369&rft_dat=%3Cproquest_cross%3E2471143910%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-9c9a5da559b9f003dbe010f6888af1fe0bf9b2ed0e5f47953a5c6b07e63bf5783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471143910&rft_id=info:pmid/&rfr_iscdi=true |