Loading…

Flexible Sensitivity Analysis for Observational Studies Without Observable Implications

A fundamental challenge in observational causal inference is that assumptions about unconfoundedness are not testable from data. Assessing sensitivity to such assumptions is therefore important in practice. Unfortunately, some existing sensitivity analysis approaches inadvertently impose restriction...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Statistical Association 2020-12, Vol.115 (532), p.1730-1746
Main Authors: Franks, AlexanderM, D'Amour, Alexander, Feller, Avi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-9c9a5da559b9f003dbe010f6888af1fe0bf9b2ed0e5f47953a5c6b07e63bf5783
cites cdi_FETCH-LOGICAL-c418t-9c9a5da559b9f003dbe010f6888af1fe0bf9b2ed0e5f47953a5c6b07e63bf5783
container_end_page 1746
container_issue 532
container_start_page 1730
container_title Journal of the American Statistical Association
container_volume 115
creator Franks, AlexanderM
D'Amour, Alexander
Feller, Avi
description A fundamental challenge in observational causal inference is that assumptions about unconfoundedness are not testable from data. Assessing sensitivity to such assumptions is therefore important in practice. Unfortunately, some existing sensitivity analysis approaches inadvertently impose restrictions that are at odds with modern causal inference methods, which emphasize flexible models for observed data. To address this issue, we propose a framework that allows (1) flexible models for the observed data and (2) clean separation of the identified and unidentified parts of the sensitivity model. Our framework extends an approach from the missing data literature, known as Tukey's factorization, to the causal inference setting. Under this factorization, we can represent the distributions of unobserved potential outcomes in terms of unidentified selection functions that posit a relationship between treatment assignment and unobserved potential outcomes. The sensitivity parameters in this framework are easily interpreted, and we provide heuristics for calibrating these parameters against observable quantities. We demonstrate the flexibility of this approach in two examples, where we estimate both average treatment effects and quantile treatment effects using Bayesian nonparametric models for the observed data.
doi_str_mv 10.1080/01621459.2019.1604369
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471143910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471143910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-9c9a5da559b9f003dbe010f6888af1fe0bf9b2ed0e5f47953a5c6b07e63bf5783</originalsourceid><addsrcrecordid>eNp9kFFLwzAQx4MoOKcfQSj43HlpmjZ5cwyng8Eepsy3kLQJZnTtTNJpv72t2169l4O73_05fgjdY5hgYPAIOEtwSvkkAcwnOIOUZPwCjTAleZzk6cclGg1MPEDX6Mb7LfSVMzZCm3mlf6yqdLTWtbfBHmzoomktq85bH5nGRSvltTvIYJt-Gq1DW1rto40Nn00bztshYbHbV7b4A_0tujKy8vru1Mfoff78NnuNl6uXxWy6jIsUsxDzgktaSkq54gaAlEoDBpMxxqTBRoMyXCW6BE1NmnNKJC0yBbnOiDI0Z2SMHo65e9d8tdoHsW1a1z_qRZLmGKeEY-gpeqQK13jvtBF7Z3fSdQKDGByKs0MxOBQnh_3d0_HO1r2JnfxuXFWKILuqccbJurBekP8jfgGq0HoP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471143910</pqid></control><display><type>article</type><title>Flexible Sensitivity Analysis for Observational Studies Without Observable Implications</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Taylor and Francis Science and Technology Collection</source><creator>Franks, AlexanderM ; D'Amour, Alexander ; Feller, Avi</creator><creatorcontrib>Franks, AlexanderM ; D'Amour, Alexander ; Feller, Avi</creatorcontrib><description>A fundamental challenge in observational causal inference is that assumptions about unconfoundedness are not testable from data. Assessing sensitivity to such assumptions is therefore important in practice. Unfortunately, some existing sensitivity analysis approaches inadvertently impose restrictions that are at odds with modern causal inference methods, which emphasize flexible models for observed data. To address this issue, we propose a framework that allows (1) flexible models for the observed data and (2) clean separation of the identified and unidentified parts of the sensitivity model. Our framework extends an approach from the missing data literature, known as Tukey's factorization, to the causal inference setting. Under this factorization, we can represent the distributions of unobserved potential outcomes in terms of unidentified selection functions that posit a relationship between treatment assignment and unobserved potential outcomes. The sensitivity parameters in this framework are easily interpreted, and we provide heuristics for calibrating these parameters against observable quantities. We demonstrate the flexibility of this approach in two examples, where we estimate both average treatment effects and quantile treatment effects using Bayesian nonparametric models for the observed data.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2019.1604369</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Bayesian analysis ; Bayesian inference ; Factorization ; Flexibility ; Heuristic ; Inference ; Latent confounder ; Mathematical models ; Missing data ; Observational studies ; Parameter sensitivity ; Regression analysis ; Sensitivity analysis ; Statistical methods ; Statistics ; Tukey's factorization</subject><ispartof>Journal of the American Statistical Association, 2020-12, Vol.115 (532), p.1730-1746</ispartof><rights>2019 American Statistical Association 2019</rights><rights>2019 American Statistical Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-9c9a5da559b9f003dbe010f6888af1fe0bf9b2ed0e5f47953a5c6b07e63bf5783</citedby><cites>FETCH-LOGICAL-c418t-9c9a5da559b9f003dbe010f6888af1fe0bf9b2ed0e5f47953a5c6b07e63bf5783</cites><orcidid>0000-0002-9329-206X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223</link.rule.ids></links><search><creatorcontrib>Franks, AlexanderM</creatorcontrib><creatorcontrib>D'Amour, Alexander</creatorcontrib><creatorcontrib>Feller, Avi</creatorcontrib><title>Flexible Sensitivity Analysis for Observational Studies Without Observable Implications</title><title>Journal of the American Statistical Association</title><description>A fundamental challenge in observational causal inference is that assumptions about unconfoundedness are not testable from data. Assessing sensitivity to such assumptions is therefore important in practice. Unfortunately, some existing sensitivity analysis approaches inadvertently impose restrictions that are at odds with modern causal inference methods, which emphasize flexible models for observed data. To address this issue, we propose a framework that allows (1) flexible models for the observed data and (2) clean separation of the identified and unidentified parts of the sensitivity model. Our framework extends an approach from the missing data literature, known as Tukey's factorization, to the causal inference setting. Under this factorization, we can represent the distributions of unobserved potential outcomes in terms of unidentified selection functions that posit a relationship between treatment assignment and unobserved potential outcomes. The sensitivity parameters in this framework are easily interpreted, and we provide heuristics for calibrating these parameters against observable quantities. We demonstrate the flexibility of this approach in two examples, where we estimate both average treatment effects and quantile treatment effects using Bayesian nonparametric models for the observed data.</description><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Factorization</subject><subject>Flexibility</subject><subject>Heuristic</subject><subject>Inference</subject><subject>Latent confounder</subject><subject>Mathematical models</subject><subject>Missing data</subject><subject>Observational studies</subject><subject>Parameter sensitivity</subject><subject>Regression analysis</subject><subject>Sensitivity analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Tukey's factorization</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp9kFFLwzAQx4MoOKcfQSj43HlpmjZ5cwyng8Eepsy3kLQJZnTtTNJpv72t2169l4O73_05fgjdY5hgYPAIOEtwSvkkAcwnOIOUZPwCjTAleZzk6cclGg1MPEDX6Mb7LfSVMzZCm3mlf6yqdLTWtbfBHmzoomktq85bH5nGRSvltTvIYJt-Gq1DW1rto40Nn00bztshYbHbV7b4A_0tujKy8vru1Mfoff78NnuNl6uXxWy6jIsUsxDzgktaSkq54gaAlEoDBpMxxqTBRoMyXCW6BE1NmnNKJC0yBbnOiDI0Z2SMHo65e9d8tdoHsW1a1z_qRZLmGKeEY-gpeqQK13jvtBF7Z3fSdQKDGByKs0MxOBQnh_3d0_HO1r2JnfxuXFWKILuqccbJurBekP8jfgGq0HoP</recordid><startdate>20201211</startdate><enddate>20201211</enddate><creator>Franks, AlexanderM</creator><creator>D'Amour, Alexander</creator><creator>Feller, Avi</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-9329-206X</orcidid></search><sort><creationdate>20201211</creationdate><title>Flexible Sensitivity Analysis for Observational Studies Without Observable Implications</title><author>Franks, AlexanderM ; D'Amour, Alexander ; Feller, Avi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-9c9a5da559b9f003dbe010f6888af1fe0bf9b2ed0e5f47953a5c6b07e63bf5783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Factorization</topic><topic>Flexibility</topic><topic>Heuristic</topic><topic>Inference</topic><topic>Latent confounder</topic><topic>Mathematical models</topic><topic>Missing data</topic><topic>Observational studies</topic><topic>Parameter sensitivity</topic><topic>Regression analysis</topic><topic>Sensitivity analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Tukey's factorization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franks, AlexanderM</creatorcontrib><creatorcontrib>D'Amour, Alexander</creatorcontrib><creatorcontrib>Feller, Avi</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franks, AlexanderM</au><au>D'Amour, Alexander</au><au>Feller, Avi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible Sensitivity Analysis for Observational Studies Without Observable Implications</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2020-12-11</date><risdate>2020</risdate><volume>115</volume><issue>532</issue><spage>1730</spage><epage>1746</epage><pages>1730-1746</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>A fundamental challenge in observational causal inference is that assumptions about unconfoundedness are not testable from data. Assessing sensitivity to such assumptions is therefore important in practice. Unfortunately, some existing sensitivity analysis approaches inadvertently impose restrictions that are at odds with modern causal inference methods, which emphasize flexible models for observed data. To address this issue, we propose a framework that allows (1) flexible models for the observed data and (2) clean separation of the identified and unidentified parts of the sensitivity model. Our framework extends an approach from the missing data literature, known as Tukey's factorization, to the causal inference setting. Under this factorization, we can represent the distributions of unobserved potential outcomes in terms of unidentified selection functions that posit a relationship between treatment assignment and unobserved potential outcomes. The sensitivity parameters in this framework are easily interpreted, and we provide heuristics for calibrating these parameters against observable quantities. We demonstrate the flexibility of this approach in two examples, where we estimate both average treatment effects and quantile treatment effects using Bayesian nonparametric models for the observed data.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/01621459.2019.1604369</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9329-206X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 2020-12, Vol.115 (532), p.1730-1746
issn 0162-1459
1537-274X
language eng
recordid cdi_proquest_journals_2471143910
source International Bibliography of the Social Sciences (IBSS); Taylor and Francis Science and Technology Collection
subjects Bayesian analysis
Bayesian inference
Factorization
Flexibility
Heuristic
Inference
Latent confounder
Mathematical models
Missing data
Observational studies
Parameter sensitivity
Regression analysis
Sensitivity analysis
Statistical methods
Statistics
Tukey's factorization
title Flexible Sensitivity Analysis for Observational Studies Without Observable Implications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A09%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20Sensitivity%20Analysis%20for%20Observational%20Studies%20Without%20Observable%20Implications&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Franks,%20AlexanderM&rft.date=2020-12-11&rft.volume=115&rft.issue=532&rft.spage=1730&rft.epage=1746&rft.pages=1730-1746&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.2019.1604369&rft_dat=%3Cproquest_cross%3E2471143910%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-9c9a5da559b9f003dbe010f6888af1fe0bf9b2ed0e5f47953a5c6b07e63bf5783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471143910&rft_id=info:pmid/&rfr_iscdi=true