Loading…

Magnetoelectric Coupling in Bismuth Ferrite—Challenges and Perspectives

Multiferroic materials belong to the sub-group of ferroics possessing two or more ferroic orders in the same phase. Aizu first coined the term multiferroics in 1969. Of late, several multiferroic materials’ unique and robust characteristics have shown great potential for various applications. Notabl...

Full description

Saved in:
Bibliographic Details
Published in:Coatings (Basel) 2020-12, Vol.10 (12), p.1221
Main Authors: N. V., Srihari, Vinayakumar, K. B., Nagaraja, K. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multiferroic materials belong to the sub-group of ferroics possessing two or more ferroic orders in the same phase. Aizu first coined the term multiferroics in 1969. Of late, several multiferroic materials’ unique and robust characteristics have shown great potential for various applications. Notably, the coexisting magnetic and electrical ordering results in the Magnetoelectric effect (ME), wherein the electrical polarization can be manipulated by magnetic fields and magnetization by electric fields. Currently, more significant interests lie in significantly enhancing the ME coupling facilitating the realization of Spintronic devices, which makes use of the transport phenomenon of spin-polarized electrons. On the other hand, the magnetoelectric coupling is also pivotal in magnetic memory devices wherein the application of small electric voltage manipulates the magnetic properties of the device. This review gives a brief overview of magnetoelectric coupling in Bismuth ferrite and approaches to achieve higher magnetoelectric coupling and device applications.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings10121221