Loading…

Biochemical tests to determine the biodegradability potential of bacterial strains in PAH polluted sites

Although the use of degrading-bacteria is one of the most efficient methods for the bioremediation of polluted sites, detection, selection and proliferation of the most efficient and competing bacteria is still a challenge. The objective of this multi-stage research was to investigate the effects of...

Full description

Saved in:
Bibliographic Details
Published in:World journal of microbiology & biotechnology 2020-12, Vol.36 (12), Article 181
Main Authors: Naeim, Amin Hossein, Baharlouei, Jila, Ataabadi, Mitra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although the use of degrading-bacteria is one of the most efficient methods for the bioremediation of polluted sites, detection, selection and proliferation of the most efficient and competing bacteria is still a challenge. The objective of this multi-stage research was to investigate the effects of the selected bacterial strains on the degradation of anthracene, florentine, naphthalene, and oil, determined by biochemical tests. In the first stage, using the following tests: (a) biosurfactant production (emulsification, oil spreading, number of drops, drop collapse, and surface tension), (b) biofilm production, (c) activity of laccase enzyme, and (d) exopolysaccaride production, the three bacterial strains with the highest degrading potential including Bacillus pumilus, B. aerophilus , and Marinobacter hydrocarbonoclasticus were chosen. In the second stage using the following tests: (a) bacterial growth, (b) laccase enzyme activity, and (c) biosurfactant production (emulsification, oil spreading, and collapse of droplet) the degrading ability of the three selected bacterial strains plus Escherichia coli were compared. Different bacterial strains were able to degrade anthracene, florentine, naphthalene, and oil by the highest rate, three days after inoculation (DAI). However, M. hydrocarbonoclasticus showed the highest rate of florentine degradation. Although with increasing pollutant concentration the degrading potential of the bacterial strains significantly decreased, M. hydrocarbonoclasticus was determined as the most efficient bacterial strain. Graphic abstract
ISSN:0959-3993
1573-0972
DOI:10.1007/s11274-020-02950-y