Loading…

Quest for quantum states via field-altering technology

We report quantum phenomena in spin-orbit-coupled single crystals that are synthesized using an innovative technology that “field-alters” crystal structures via application of magnetic field during crystal growth. This study addresses a major challenge facing the research community today: A great de...

Full description

Saved in:
Bibliographic Details
Published in:npj quantum materials 2020-11, Vol.5 (1), Article 83
Main Authors: Cao, Gang, Zhao, Hengdi, Hu, Bing, Pellatz, Nicholas, Reznik, Dmitry, Schlottmann, Pedro, Kimchi, Itamar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-6df0e0661ceaa4eaed83096e27251b691bb291e4577f50095a98ec3b9cb179333
cites cdi_FETCH-LOGICAL-c363t-6df0e0661ceaa4eaed83096e27251b691bb291e4577f50095a98ec3b9cb179333
container_end_page
container_issue 1
container_start_page
container_title npj quantum materials
container_volume 5
creator Cao, Gang
Zhao, Hengdi
Hu, Bing
Pellatz, Nicholas
Reznik, Dmitry
Schlottmann, Pedro
Kimchi, Itamar
description We report quantum phenomena in spin-orbit-coupled single crystals that are synthesized using an innovative technology that “field-alters” crystal structures via application of magnetic field during crystal growth. This study addresses a major challenge facing the research community today: A great deal of theoretical work predicting exotic states for strongly spin-orbit-coupled, correlated materials has thus far met very limited experimental confirmation. These conspicuous discrepancies are due in part to the extreme sensitivity of these materials to structural distortions. The results presented here demonstrate that the field-altered materials not only are much less distorted but also exhibit phenomena absent in their non-altered counterparts. The field-altered materials include an array of 4d and 5d transition metal oxides, and three representative materials presented here are Ba 4 Ir 3 O 10 , Ca 2 RuO 4 , and Sr 2 IrO 4 . This study provides an approach for discovery of quantum states and materials otherwise unavailable.
doi_str_mv 10.1038/s41535-020-00286-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471553227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471553227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-6df0e0661ceaa4eaed83096e27251b691bb291e4577f50095a98ec3b9cb179333</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsNT-A54Cnldnv7NHKX4UCiLoedkkk5qSJu3uRuh_b2oEPXmaObz3Zt6PkGsGtwxEfhclU0JR4EABeK4pPyMzLqyhUsv8_M9-SRYxbmFUMZZLrWdEvw4YU1b3ITsMvkvDLovJJ4zZZ-OzusG2or5NGJpukyUsP7q-7TfHK3JR-zbi4mfOyfvjw9vyma5fnlbL-zUthRaJ6qoGBK1Zid5L9FjlAqxGbrhihbasKLhlKJUxtQKwytscS1HYsmDGCiHm5GbK3Yf-cPrUbfshdONJx6VhSgnOzajik6oMfYwBa7cPzc6Ho2PgTojchMiNiNw3IsdHk5hMcX8qh-E3-h_XFw-waAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471553227</pqid></control><display><type>article</type><title>Quest for quantum states via field-altering technology</title><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Cao, Gang ; Zhao, Hengdi ; Hu, Bing ; Pellatz, Nicholas ; Reznik, Dmitry ; Schlottmann, Pedro ; Kimchi, Itamar</creator><creatorcontrib>Cao, Gang ; Zhao, Hengdi ; Hu, Bing ; Pellatz, Nicholas ; Reznik, Dmitry ; Schlottmann, Pedro ; Kimchi, Itamar</creatorcontrib><description>We report quantum phenomena in spin-orbit-coupled single crystals that are synthesized using an innovative technology that “field-alters” crystal structures via application of magnetic field during crystal growth. This study addresses a major challenge facing the research community today: A great deal of theoretical work predicting exotic states for strongly spin-orbit-coupled, correlated materials has thus far met very limited experimental confirmation. These conspicuous discrepancies are due in part to the extreme sensitivity of these materials to structural distortions. The results presented here demonstrate that the field-altered materials not only are much less distorted but also exhibit phenomena absent in their non-altered counterparts. The field-altered materials include an array of 4d and 5d transition metal oxides, and three representative materials presented here are Ba 4 Ir 3 O 10 , Ca 2 RuO 4 , and Sr 2 IrO 4 . This study provides an approach for discovery of quantum states and materials otherwise unavailable.</description><identifier>ISSN: 2397-4648</identifier><identifier>EISSN: 2397-4648</identifier><identifier>DOI: 10.1038/s41535-020-00286-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301 ; 639/766 ; Condensed Matter Physics ; Crystal growth ; Crystal structure ; Crystals ; Physics ; Physics and Astronomy ; Quantum phenomena ; Quantum Physics ; Single crystals ; Structural Materials ; Surfaces and Interfaces ; Thin Films ; Transition metal oxides</subject><ispartof>npj quantum materials, 2020-11, Vol.5 (1), Article 83</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-6df0e0661ceaa4eaed83096e27251b691bb291e4577f50095a98ec3b9cb179333</citedby><cites>FETCH-LOGICAL-c363t-6df0e0661ceaa4eaed83096e27251b691bb291e4577f50095a98ec3b9cb179333</cites><orcidid>0000-0003-3429-8223 ; 0000-0001-5749-8549 ; 0000-0001-9779-430X ; 0000-0002-5152-2605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2471553227?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Cao, Gang</creatorcontrib><creatorcontrib>Zhao, Hengdi</creatorcontrib><creatorcontrib>Hu, Bing</creatorcontrib><creatorcontrib>Pellatz, Nicholas</creatorcontrib><creatorcontrib>Reznik, Dmitry</creatorcontrib><creatorcontrib>Schlottmann, Pedro</creatorcontrib><creatorcontrib>Kimchi, Itamar</creatorcontrib><title>Quest for quantum states via field-altering technology</title><title>npj quantum materials</title><addtitle>npj Quantum Mater</addtitle><description>We report quantum phenomena in spin-orbit-coupled single crystals that are synthesized using an innovative technology that “field-alters” crystal structures via application of magnetic field during crystal growth. This study addresses a major challenge facing the research community today: A great deal of theoretical work predicting exotic states for strongly spin-orbit-coupled, correlated materials has thus far met very limited experimental confirmation. These conspicuous discrepancies are due in part to the extreme sensitivity of these materials to structural distortions. The results presented here demonstrate that the field-altered materials not only are much less distorted but also exhibit phenomena absent in their non-altered counterparts. The field-altered materials include an array of 4d and 5d transition metal oxides, and three representative materials presented here are Ba 4 Ir 3 O 10 , Ca 2 RuO 4 , and Sr 2 IrO 4 . This study provides an approach for discovery of quantum states and materials otherwise unavailable.</description><subject>639/301</subject><subject>639/766</subject><subject>Condensed Matter Physics</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum phenomena</subject><subject>Quantum Physics</subject><subject>Single crystals</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Transition metal oxides</subject><issn>2397-4648</issn><issn>2397-4648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kM1Lw0AQxRdRsNT-A54Cnldnv7NHKX4UCiLoedkkk5qSJu3uRuh_b2oEPXmaObz3Zt6PkGsGtwxEfhclU0JR4EABeK4pPyMzLqyhUsv8_M9-SRYxbmFUMZZLrWdEvw4YU1b3ITsMvkvDLovJJ4zZZ-OzusG2or5NGJpukyUsP7q-7TfHK3JR-zbi4mfOyfvjw9vyma5fnlbL-zUthRaJ6qoGBK1Zid5L9FjlAqxGbrhihbasKLhlKJUxtQKwytscS1HYsmDGCiHm5GbK3Yf-cPrUbfshdONJx6VhSgnOzajik6oMfYwBa7cPzc6Ho2PgTojchMiNiNw3IsdHk5hMcX8qh-E3-h_XFw-waAo</recordid><startdate>20201109</startdate><enddate>20201109</enddate><creator>Cao, Gang</creator><creator>Zhao, Hengdi</creator><creator>Hu, Bing</creator><creator>Pellatz, Nicholas</creator><creator>Reznik, Dmitry</creator><creator>Schlottmann, Pedro</creator><creator>Kimchi, Itamar</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-3429-8223</orcidid><orcidid>https://orcid.org/0000-0001-5749-8549</orcidid><orcidid>https://orcid.org/0000-0001-9779-430X</orcidid><orcidid>https://orcid.org/0000-0002-5152-2605</orcidid></search><sort><creationdate>20201109</creationdate><title>Quest for quantum states via field-altering technology</title><author>Cao, Gang ; Zhao, Hengdi ; Hu, Bing ; Pellatz, Nicholas ; Reznik, Dmitry ; Schlottmann, Pedro ; Kimchi, Itamar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-6df0e0661ceaa4eaed83096e27251b691bb291e4577f50095a98ec3b9cb179333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301</topic><topic>639/766</topic><topic>Condensed Matter Physics</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum phenomena</topic><topic>Quantum Physics</topic><topic>Single crystals</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Transition metal oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Gang</creatorcontrib><creatorcontrib>Zhao, Hengdi</creatorcontrib><creatorcontrib>Hu, Bing</creatorcontrib><creatorcontrib>Pellatz, Nicholas</creatorcontrib><creatorcontrib>Reznik, Dmitry</creatorcontrib><creatorcontrib>Schlottmann, Pedro</creatorcontrib><creatorcontrib>Kimchi, Itamar</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>npj quantum materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Gang</au><au>Zhao, Hengdi</au><au>Hu, Bing</au><au>Pellatz, Nicholas</au><au>Reznik, Dmitry</au><au>Schlottmann, Pedro</au><au>Kimchi, Itamar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quest for quantum states via field-altering technology</atitle><jtitle>npj quantum materials</jtitle><stitle>npj Quantum Mater</stitle><date>2020-11-09</date><risdate>2020</risdate><volume>5</volume><issue>1</issue><artnum>83</artnum><issn>2397-4648</issn><eissn>2397-4648</eissn><abstract>We report quantum phenomena in spin-orbit-coupled single crystals that are synthesized using an innovative technology that “field-alters” crystal structures via application of magnetic field during crystal growth. This study addresses a major challenge facing the research community today: A great deal of theoretical work predicting exotic states for strongly spin-orbit-coupled, correlated materials has thus far met very limited experimental confirmation. These conspicuous discrepancies are due in part to the extreme sensitivity of these materials to structural distortions. The results presented here demonstrate that the field-altered materials not only are much less distorted but also exhibit phenomena absent in their non-altered counterparts. The field-altered materials include an array of 4d and 5d transition metal oxides, and three representative materials presented here are Ba 4 Ir 3 O 10 , Ca 2 RuO 4 , and Sr 2 IrO 4 . This study provides an approach for discovery of quantum states and materials otherwise unavailable.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41535-020-00286-2</doi><orcidid>https://orcid.org/0000-0003-3429-8223</orcidid><orcidid>https://orcid.org/0000-0001-5749-8549</orcidid><orcidid>https://orcid.org/0000-0001-9779-430X</orcidid><orcidid>https://orcid.org/0000-0002-5152-2605</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2397-4648
ispartof npj quantum materials, 2020-11, Vol.5 (1), Article 83
issn 2397-4648
2397-4648
language eng
recordid cdi_proquest_journals_2471553227
source Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301
639/766
Condensed Matter Physics
Crystal growth
Crystal structure
Crystals
Physics
Physics and Astronomy
Quantum phenomena
Quantum Physics
Single crystals
Structural Materials
Surfaces and Interfaces
Thin Films
Transition metal oxides
title Quest for quantum states via field-altering technology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quest%20for%20quantum%20states%20via%20field-altering%20technology&rft.jtitle=npj%20quantum%20materials&rft.au=Cao,%20Gang&rft.date=2020-11-09&rft.volume=5&rft.issue=1&rft.artnum=83&rft.issn=2397-4648&rft.eissn=2397-4648&rft_id=info:doi/10.1038/s41535-020-00286-2&rft_dat=%3Cproquest_cross%3E2471553227%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-6df0e0661ceaa4eaed83096e27251b691bb291e4577f50095a98ec3b9cb179333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471553227&rft_id=info:pmid/&rfr_iscdi=true