Loading…
Quest for quantum states via field-altering technology
We report quantum phenomena in spin-orbit-coupled single crystals that are synthesized using an innovative technology that “field-alters” crystal structures via application of magnetic field during crystal growth. This study addresses a major challenge facing the research community today: A great de...
Saved in:
Published in: | npj quantum materials 2020-11, Vol.5 (1), Article 83 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-6df0e0661ceaa4eaed83096e27251b691bb291e4577f50095a98ec3b9cb179333 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-6df0e0661ceaa4eaed83096e27251b691bb291e4577f50095a98ec3b9cb179333 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | npj quantum materials |
container_volume | 5 |
creator | Cao, Gang Zhao, Hengdi Hu, Bing Pellatz, Nicholas Reznik, Dmitry Schlottmann, Pedro Kimchi, Itamar |
description | We report quantum phenomena in spin-orbit-coupled single crystals that are synthesized using an innovative technology that “field-alters” crystal structures via application of magnetic field during crystal growth. This study addresses a major challenge facing the research community today: A great deal of theoretical work predicting exotic states for strongly spin-orbit-coupled, correlated materials has thus far met very limited experimental confirmation. These conspicuous discrepancies are due in part to the extreme sensitivity of these materials to structural distortions. The results presented here demonstrate that the field-altered materials not only are much less distorted but also exhibit phenomena absent in their non-altered counterparts. The field-altered materials include an array of
4d
and
5d
transition metal oxides, and three representative materials presented here are Ba
4
Ir
3
O
10
, Ca
2
RuO
4
, and Sr
2
IrO
4
. This study provides an approach for discovery of quantum states and materials otherwise unavailable. |
doi_str_mv | 10.1038/s41535-020-00286-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471553227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471553227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-6df0e0661ceaa4eaed83096e27251b691bb291e4577f50095a98ec3b9cb179333</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsNT-A54Cnldnv7NHKX4UCiLoedkkk5qSJu3uRuh_b2oEPXmaObz3Zt6PkGsGtwxEfhclU0JR4EABeK4pPyMzLqyhUsv8_M9-SRYxbmFUMZZLrWdEvw4YU1b3ITsMvkvDLovJJ4zZZ-OzusG2or5NGJpukyUsP7q-7TfHK3JR-zbi4mfOyfvjw9vyma5fnlbL-zUthRaJ6qoGBK1Zid5L9FjlAqxGbrhihbasKLhlKJUxtQKwytscS1HYsmDGCiHm5GbK3Yf-cPrUbfshdONJx6VhSgnOzajik6oMfYwBa7cPzc6Ho2PgTojchMiNiNw3IsdHk5hMcX8qh-E3-h_XFw-waAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471553227</pqid></control><display><type>article</type><title>Quest for quantum states via field-altering technology</title><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Cao, Gang ; Zhao, Hengdi ; Hu, Bing ; Pellatz, Nicholas ; Reznik, Dmitry ; Schlottmann, Pedro ; Kimchi, Itamar</creator><creatorcontrib>Cao, Gang ; Zhao, Hengdi ; Hu, Bing ; Pellatz, Nicholas ; Reznik, Dmitry ; Schlottmann, Pedro ; Kimchi, Itamar</creatorcontrib><description>We report quantum phenomena in spin-orbit-coupled single crystals that are synthesized using an innovative technology that “field-alters” crystal structures via application of magnetic field during crystal growth. This study addresses a major challenge facing the research community today: A great deal of theoretical work predicting exotic states for strongly spin-orbit-coupled, correlated materials has thus far met very limited experimental confirmation. These conspicuous discrepancies are due in part to the extreme sensitivity of these materials to structural distortions. The results presented here demonstrate that the field-altered materials not only are much less distorted but also exhibit phenomena absent in their non-altered counterparts. The field-altered materials include an array of
4d
and
5d
transition metal oxides, and three representative materials presented here are Ba
4
Ir
3
O
10
, Ca
2
RuO
4
, and Sr
2
IrO
4
. This study provides an approach for discovery of quantum states and materials otherwise unavailable.</description><identifier>ISSN: 2397-4648</identifier><identifier>EISSN: 2397-4648</identifier><identifier>DOI: 10.1038/s41535-020-00286-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301 ; 639/766 ; Condensed Matter Physics ; Crystal growth ; Crystal structure ; Crystals ; Physics ; Physics and Astronomy ; Quantum phenomena ; Quantum Physics ; Single crystals ; Structural Materials ; Surfaces and Interfaces ; Thin Films ; Transition metal oxides</subject><ispartof>npj quantum materials, 2020-11, Vol.5 (1), Article 83</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-6df0e0661ceaa4eaed83096e27251b691bb291e4577f50095a98ec3b9cb179333</citedby><cites>FETCH-LOGICAL-c363t-6df0e0661ceaa4eaed83096e27251b691bb291e4577f50095a98ec3b9cb179333</cites><orcidid>0000-0003-3429-8223 ; 0000-0001-5749-8549 ; 0000-0001-9779-430X ; 0000-0002-5152-2605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2471553227?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Cao, Gang</creatorcontrib><creatorcontrib>Zhao, Hengdi</creatorcontrib><creatorcontrib>Hu, Bing</creatorcontrib><creatorcontrib>Pellatz, Nicholas</creatorcontrib><creatorcontrib>Reznik, Dmitry</creatorcontrib><creatorcontrib>Schlottmann, Pedro</creatorcontrib><creatorcontrib>Kimchi, Itamar</creatorcontrib><title>Quest for quantum states via field-altering technology</title><title>npj quantum materials</title><addtitle>npj Quantum Mater</addtitle><description>We report quantum phenomena in spin-orbit-coupled single crystals that are synthesized using an innovative technology that “field-alters” crystal structures via application of magnetic field during crystal growth. This study addresses a major challenge facing the research community today: A great deal of theoretical work predicting exotic states for strongly spin-orbit-coupled, correlated materials has thus far met very limited experimental confirmation. These conspicuous discrepancies are due in part to the extreme sensitivity of these materials to structural distortions. The results presented here demonstrate that the field-altered materials not only are much less distorted but also exhibit phenomena absent in their non-altered counterparts. The field-altered materials include an array of
4d
and
5d
transition metal oxides, and three representative materials presented here are Ba
4
Ir
3
O
10
, Ca
2
RuO
4
, and Sr
2
IrO
4
. This study provides an approach for discovery of quantum states and materials otherwise unavailable.</description><subject>639/301</subject><subject>639/766</subject><subject>Condensed Matter Physics</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum phenomena</subject><subject>Quantum Physics</subject><subject>Single crystals</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Transition metal oxides</subject><issn>2397-4648</issn><issn>2397-4648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kM1Lw0AQxRdRsNT-A54Cnldnv7NHKX4UCiLoedkkk5qSJu3uRuh_b2oEPXmaObz3Zt6PkGsGtwxEfhclU0JR4EABeK4pPyMzLqyhUsv8_M9-SRYxbmFUMZZLrWdEvw4YU1b3ITsMvkvDLovJJ4zZZ-OzusG2or5NGJpukyUsP7q-7TfHK3JR-zbi4mfOyfvjw9vyma5fnlbL-zUthRaJ6qoGBK1Zid5L9FjlAqxGbrhihbasKLhlKJUxtQKwytscS1HYsmDGCiHm5GbK3Yf-cPrUbfshdONJx6VhSgnOzajik6oMfYwBa7cPzc6Ho2PgTojchMiNiNw3IsdHk5hMcX8qh-E3-h_XFw-waAo</recordid><startdate>20201109</startdate><enddate>20201109</enddate><creator>Cao, Gang</creator><creator>Zhao, Hengdi</creator><creator>Hu, Bing</creator><creator>Pellatz, Nicholas</creator><creator>Reznik, Dmitry</creator><creator>Schlottmann, Pedro</creator><creator>Kimchi, Itamar</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-3429-8223</orcidid><orcidid>https://orcid.org/0000-0001-5749-8549</orcidid><orcidid>https://orcid.org/0000-0001-9779-430X</orcidid><orcidid>https://orcid.org/0000-0002-5152-2605</orcidid></search><sort><creationdate>20201109</creationdate><title>Quest for quantum states via field-altering technology</title><author>Cao, Gang ; Zhao, Hengdi ; Hu, Bing ; Pellatz, Nicholas ; Reznik, Dmitry ; Schlottmann, Pedro ; Kimchi, Itamar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-6df0e0661ceaa4eaed83096e27251b691bb291e4577f50095a98ec3b9cb179333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301</topic><topic>639/766</topic><topic>Condensed Matter Physics</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum phenomena</topic><topic>Quantum Physics</topic><topic>Single crystals</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Transition metal oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Gang</creatorcontrib><creatorcontrib>Zhao, Hengdi</creatorcontrib><creatorcontrib>Hu, Bing</creatorcontrib><creatorcontrib>Pellatz, Nicholas</creatorcontrib><creatorcontrib>Reznik, Dmitry</creatorcontrib><creatorcontrib>Schlottmann, Pedro</creatorcontrib><creatorcontrib>Kimchi, Itamar</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>npj quantum materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Gang</au><au>Zhao, Hengdi</au><au>Hu, Bing</au><au>Pellatz, Nicholas</au><au>Reznik, Dmitry</au><au>Schlottmann, Pedro</au><au>Kimchi, Itamar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quest for quantum states via field-altering technology</atitle><jtitle>npj quantum materials</jtitle><stitle>npj Quantum Mater</stitle><date>2020-11-09</date><risdate>2020</risdate><volume>5</volume><issue>1</issue><artnum>83</artnum><issn>2397-4648</issn><eissn>2397-4648</eissn><abstract>We report quantum phenomena in spin-orbit-coupled single crystals that are synthesized using an innovative technology that “field-alters” crystal structures via application of magnetic field during crystal growth. This study addresses a major challenge facing the research community today: A great deal of theoretical work predicting exotic states for strongly spin-orbit-coupled, correlated materials has thus far met very limited experimental confirmation. These conspicuous discrepancies are due in part to the extreme sensitivity of these materials to structural distortions. The results presented here demonstrate that the field-altered materials not only are much less distorted but also exhibit phenomena absent in their non-altered counterparts. The field-altered materials include an array of
4d
and
5d
transition metal oxides, and three representative materials presented here are Ba
4
Ir
3
O
10
, Ca
2
RuO
4
, and Sr
2
IrO
4
. This study provides an approach for discovery of quantum states and materials otherwise unavailable.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41535-020-00286-2</doi><orcidid>https://orcid.org/0000-0003-3429-8223</orcidid><orcidid>https://orcid.org/0000-0001-5749-8549</orcidid><orcidid>https://orcid.org/0000-0001-9779-430X</orcidid><orcidid>https://orcid.org/0000-0002-5152-2605</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2397-4648 |
ispartof | npj quantum materials, 2020-11, Vol.5 (1), Article 83 |
issn | 2397-4648 2397-4648 |
language | eng |
recordid | cdi_proquest_journals_2471553227 |
source | Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301 639/766 Condensed Matter Physics Crystal growth Crystal structure Crystals Physics Physics and Astronomy Quantum phenomena Quantum Physics Single crystals Structural Materials Surfaces and Interfaces Thin Films Transition metal oxides |
title | Quest for quantum states via field-altering technology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quest%20for%20quantum%20states%20via%20field-altering%20technology&rft.jtitle=npj%20quantum%20materials&rft.au=Cao,%20Gang&rft.date=2020-11-09&rft.volume=5&rft.issue=1&rft.artnum=83&rft.issn=2397-4648&rft.eissn=2397-4648&rft_id=info:doi/10.1038/s41535-020-00286-2&rft_dat=%3Cproquest_cross%3E2471553227%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-6df0e0661ceaa4eaed83096e27251b691bb291e4577f50095a98ec3b9cb179333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471553227&rft_id=info:pmid/&rfr_iscdi=true |