Loading…

New Antidiabetic Targets of α-Glucosidase Inhibitory Peptides, SVPA, SEPA, STYV and STY: Inhibitory Effects on Dipeptidyl Peptidase-IV and Lipid Accumulation in 3T3-L1 Differentiated Adipocytes with Scavenging Activities Against Methylglyoxal and Reactive Oxygen Species

Type 2 diabetes mellitus (T2DM) is a multifactorial disease that requires multiple therapeutic strategies for its management. Bioactive peptides with multiple anti-diabetic targets are attractive therapeutic molecules. The present study was conducted to identify additional anti-diabetic targets of α...

Full description

Saved in:
Bibliographic Details
Published in:International journal of peptide research and therapeutics 2020-12, Vol.26 (4), p.1949-1963
Main Authors: Ibrahim, Mohammed Auwal, Serem, June C., Bester, Megan J., Neitz, Albert W., Gaspar, Anabella R. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Type 2 diabetes mellitus (T2DM) is a multifactorial disease that requires multiple therapeutic strategies for its management. Bioactive peptides with multiple anti-diabetic targets are attractive therapeutic molecules. The present study was conducted to identify additional anti-diabetic targets of α-glucosidase inhibitory peptides, SVPA, SEPA, STYV, and STY. The α-glucosidase inhibitory activity of the peptides was in the order STYV > STY > SEPA > SVPA while molecular docking against human dipeptidyl peptidase IV (DPP-IV) showed that SVPA had the best binding affinity. In contrast, in vitro studies indicated that SEPA had a significantly higher ( P 
ISSN:1573-3149
1573-3904
DOI:10.1007/s10989-019-09993-2