Loading…

Evolution of the Quiescent Disk Surrounding a Superoutburst of the Dwarf Nova TW Virginis

In this paper, we investigate portions of the Kepler K2 Short Cadence light curve of the dwarf nova (DN) TW Vir at quiescence, using light-curve modeling. The light curve was separated into 24 sections, each with a data length of ∼0.93 days, comprising 4 sections before, and 20 after a superoutburst...

Full description

Saved in:
Bibliographic Details
Published in:The Astronomical journal 2021-01, Vol.161 (1), p.34
Main Authors: Dai 戴智, Zhibin 斌, Szkody, Paula, Garnavich, Peter M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c313t-f9b7889f8815e125fff713db771dcbf09bc5705ea487d39cc6480be659adebb63
cites cdi_FETCH-LOGICAL-c313t-f9b7889f8815e125fff713db771dcbf09bc5705ea487d39cc6480be659adebb63
container_end_page
container_issue 1
container_start_page 34
container_title The Astronomical journal
container_volume 161
creator Dai 戴智, Zhibin 斌
Szkody, Paula
Garnavich, Peter M.
description In this paper, we investigate portions of the Kepler K2 Short Cadence light curve of the dwarf nova (DN) TW Vir at quiescence, using light-curve modeling. The light curve was separated into 24 sections, each with a data length of ∼0.93 days, comprising 4 sections before, and 20 after a superoutburst (SO). Due to morphological differences, the quiescent orbital modulation is classified into three types. Using a fixed disk radius and the two component stellar parameters, all 24 synthetic disk models from these sections show a consistent configuration, consisting of a disk and two hotspots: one at the vertical side of the edge of the disk and the other on the surface of the disk. Before the SO, the disk and a ringlike surface-hotspot are suddenly enhanced, triggering a precursor, and then the SO. At the end of the quiescent period following the SO and before the first normal outburst, the edge-hotspot becomes hotter, while the surface-hotspot switches into a “coolspot” with a coverage of nearly half of the disk’s surface. During quiescence, the surface-hotspot is always located at the outer part of the disk, with a constant radial width. A flat radial temperature distribution of the disk is found, and appears flatter when approaching the outburst. Like many U Gem-type DN with orbital periods of 3–5 hr, the mass transfer rate is significantly lower than the predictions of the standard/revised models of CV evolution.
doi_str_mv 10.3847/1538-3881/abc8eb
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471801965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471801965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-f9b7889f8815e125fff713db771dcbf09bc5705ea487d39cc6480be659adebb63</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3jwHPa5PNZpM9SlurUBSxKp5Ckk1qat3UfFT8791S9TS84c3Mmx8A5xhdEl6xEaaEF4RzPJJKc6MOwOC_dQgGCKGqqEtaH4OTGFcIYcxRNQCv061f5-R8B72F6c3Ah-xM1KZLcOLiO3zMIfjcta5bQtmrjellUjnE9Dcx-ZLBwju_lXDxAp9dWLrOxVNwZOU6mrPfOgRP19PF-KaY389ux1fzQhNMUmEbxThvbB-TGlxSay3DpFWM4VYrixqlKUPUyIqzljRa1xVHytS0ka1RqiZDcLHfuwn-M5uYxMrn0PUnRVmx_kvc1LR3ob1LBx9jMFZsgvuQ4VtgJHYAxY6W2NESe4DkB4jqZUM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471801965</pqid></control><display><type>article</type><title>Evolution of the Quiescent Disk Surrounding a Superoutburst of the Dwarf Nova TW Virginis</title><source>DOAJ Directory of Open Access Journals</source><creator>Dai 戴智, Zhibin 斌 ; Szkody, Paula ; Garnavich, Peter M.</creator><creatorcontrib>Dai 戴智, Zhibin 斌 ; Szkody, Paula ; Garnavich, Peter M.</creatorcontrib><description>In this paper, we investigate portions of the Kepler K2 Short Cadence light curve of the dwarf nova (DN) TW Vir at quiescence, using light-curve modeling. The light curve was separated into 24 sections, each with a data length of ∼0.93 days, comprising 4 sections before, and 20 after a superoutburst (SO). Due to morphological differences, the quiescent orbital modulation is classified into three types. Using a fixed disk radius and the two component stellar parameters, all 24 synthetic disk models from these sections show a consistent configuration, consisting of a disk and two hotspots: one at the vertical side of the edge of the disk and the other on the surface of the disk. Before the SO, the disk and a ringlike surface-hotspot are suddenly enhanced, triggering a precursor, and then the SO. At the end of the quiescent period following the SO and before the first normal outburst, the edge-hotspot becomes hotter, while the surface-hotspot switches into a “coolspot” with a coverage of nearly half of the disk’s surface. During quiescence, the surface-hotspot is always located at the outer part of the disk, with a constant radial width. A flat radial temperature distribution of the disk is found, and appears flatter when approaching the outburst. Like many U Gem-type DN with orbital periods of 3–5 hr, the mass transfer rate is significantly lower than the predictions of the standard/revised models of CV evolution.</description><identifier>ISSN: 0004-6256</identifier><identifier>EISSN: 1538-3881</identifier><identifier>DOI: 10.3847/1538-3881/abc8eb</identifier><language>eng</language><publisher>Madison: IOP Publishing</publisher><subject>Astronomical models ; Astronomy ; Dwarf novae ; Evolution ; Light curve ; Mass transfer ; Orbits ; Stellar evolution ; Switches ; Temperature distribution</subject><ispartof>The Astronomical journal, 2021-01, Vol.161 (1), p.34</ispartof><rights>Copyright IOP Publishing Jan 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-f9b7889f8815e125fff713db771dcbf09bc5705ea487d39cc6480be659adebb63</citedby><cites>FETCH-LOGICAL-c313t-f9b7889f8815e125fff713db771dcbf09bc5705ea487d39cc6480be659adebb63</cites><orcidid>0000-0003-4069-2817 ; 0000-0002-4280-6630 ; 0000-0003-4373-7777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Dai 戴智, Zhibin 斌</creatorcontrib><creatorcontrib>Szkody, Paula</creatorcontrib><creatorcontrib>Garnavich, Peter M.</creatorcontrib><title>Evolution of the Quiescent Disk Surrounding a Superoutburst of the Dwarf Nova TW Virginis</title><title>The Astronomical journal</title><description>In this paper, we investigate portions of the Kepler K2 Short Cadence light curve of the dwarf nova (DN) TW Vir at quiescence, using light-curve modeling. The light curve was separated into 24 sections, each with a data length of ∼0.93 days, comprising 4 sections before, and 20 after a superoutburst (SO). Due to morphological differences, the quiescent orbital modulation is classified into three types. Using a fixed disk radius and the two component stellar parameters, all 24 synthetic disk models from these sections show a consistent configuration, consisting of a disk and two hotspots: one at the vertical side of the edge of the disk and the other on the surface of the disk. Before the SO, the disk and a ringlike surface-hotspot are suddenly enhanced, triggering a precursor, and then the SO. At the end of the quiescent period following the SO and before the first normal outburst, the edge-hotspot becomes hotter, while the surface-hotspot switches into a “coolspot” with a coverage of nearly half of the disk’s surface. During quiescence, the surface-hotspot is always located at the outer part of the disk, with a constant radial width. A flat radial temperature distribution of the disk is found, and appears flatter when approaching the outburst. Like many U Gem-type DN with orbital periods of 3–5 hr, the mass transfer rate is significantly lower than the predictions of the standard/revised models of CV evolution.</description><subject>Astronomical models</subject><subject>Astronomy</subject><subject>Dwarf novae</subject><subject>Evolution</subject><subject>Light curve</subject><subject>Mass transfer</subject><subject>Orbits</subject><subject>Stellar evolution</subject><subject>Switches</subject><subject>Temperature distribution</subject><issn>0004-6256</issn><issn>1538-3881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKt3jwHPa5PNZpM9SlurUBSxKp5Ckk1qat3UfFT8791S9TS84c3Mmx8A5xhdEl6xEaaEF4RzPJJKc6MOwOC_dQgGCKGqqEtaH4OTGFcIYcxRNQCv061f5-R8B72F6c3Ah-xM1KZLcOLiO3zMIfjcta5bQtmrjellUjnE9Dcx-ZLBwju_lXDxAp9dWLrOxVNwZOU6mrPfOgRP19PF-KaY389ux1fzQhNMUmEbxThvbB-TGlxSay3DpFWM4VYrixqlKUPUyIqzljRa1xVHytS0ka1RqiZDcLHfuwn-M5uYxMrn0PUnRVmx_kvc1LR3ob1LBx9jMFZsgvuQ4VtgJHYAxY6W2NESe4DkB4jqZUM</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Dai 戴智, Zhibin 斌</creator><creator>Szkody, Paula</creator><creator>Garnavich, Peter M.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4069-2817</orcidid><orcidid>https://orcid.org/0000-0002-4280-6630</orcidid><orcidid>https://orcid.org/0000-0003-4373-7777</orcidid></search><sort><creationdate>20210101</creationdate><title>Evolution of the Quiescent Disk Surrounding a Superoutburst of the Dwarf Nova TW Virginis</title><author>Dai 戴智, Zhibin 斌 ; Szkody, Paula ; Garnavich, Peter M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-f9b7889f8815e125fff713db771dcbf09bc5705ea487d39cc6480be659adebb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomical models</topic><topic>Astronomy</topic><topic>Dwarf novae</topic><topic>Evolution</topic><topic>Light curve</topic><topic>Mass transfer</topic><topic>Orbits</topic><topic>Stellar evolution</topic><topic>Switches</topic><topic>Temperature distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai 戴智, Zhibin 斌</creatorcontrib><creatorcontrib>Szkody, Paula</creatorcontrib><creatorcontrib>Garnavich, Peter M.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astronomical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai 戴智, Zhibin 斌</au><au>Szkody, Paula</au><au>Garnavich, Peter M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of the Quiescent Disk Surrounding a Superoutburst of the Dwarf Nova TW Virginis</atitle><jtitle>The Astronomical journal</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>161</volume><issue>1</issue><spage>34</spage><pages>34-</pages><issn>0004-6256</issn><eissn>1538-3881</eissn><abstract>In this paper, we investigate portions of the Kepler K2 Short Cadence light curve of the dwarf nova (DN) TW Vir at quiescence, using light-curve modeling. The light curve was separated into 24 sections, each with a data length of ∼0.93 days, comprising 4 sections before, and 20 after a superoutburst (SO). Due to morphological differences, the quiescent orbital modulation is classified into three types. Using a fixed disk radius and the two component stellar parameters, all 24 synthetic disk models from these sections show a consistent configuration, consisting of a disk and two hotspots: one at the vertical side of the edge of the disk and the other on the surface of the disk. Before the SO, the disk and a ringlike surface-hotspot are suddenly enhanced, triggering a precursor, and then the SO. At the end of the quiescent period following the SO and before the first normal outburst, the edge-hotspot becomes hotter, while the surface-hotspot switches into a “coolspot” with a coverage of nearly half of the disk’s surface. During quiescence, the surface-hotspot is always located at the outer part of the disk, with a constant radial width. A flat radial temperature distribution of the disk is found, and appears flatter when approaching the outburst. Like many U Gem-type DN with orbital periods of 3–5 hr, the mass transfer rate is significantly lower than the predictions of the standard/revised models of CV evolution.</abstract><cop>Madison</cop><pub>IOP Publishing</pub><doi>10.3847/1538-3881/abc8eb</doi><orcidid>https://orcid.org/0000-0003-4069-2817</orcidid><orcidid>https://orcid.org/0000-0002-4280-6630</orcidid><orcidid>https://orcid.org/0000-0003-4373-7777</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6256
ispartof The Astronomical journal, 2021-01, Vol.161 (1), p.34
issn 0004-6256
1538-3881
language eng
recordid cdi_proquest_journals_2471801965
source DOAJ Directory of Open Access Journals
subjects Astronomical models
Astronomy
Dwarf novae
Evolution
Light curve
Mass transfer
Orbits
Stellar evolution
Switches
Temperature distribution
title Evolution of the Quiescent Disk Surrounding a Superoutburst of the Dwarf Nova TW Virginis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A15%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20the%20Quiescent%20Disk%20Surrounding%20a%20Superoutburst%20of%20the%20Dwarf%20Nova%20TW%20Virginis&rft.jtitle=The%20Astronomical%20journal&rft.au=Dai%20%E6%88%B4%E6%99%BA,%20Zhibin%20%E6%96%8C&rft.date=2021-01-01&rft.volume=161&rft.issue=1&rft.spage=34&rft.pages=34-&rft.issn=0004-6256&rft.eissn=1538-3881&rft_id=info:doi/10.3847/1538-3881/abc8eb&rft_dat=%3Cproquest_cross%3E2471801965%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-f9b7889f8815e125fff713db771dcbf09bc5705ea487d39cc6480be659adebb63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471801965&rft_id=info:pmid/&rfr_iscdi=true