Loading…
Lithium-Ion Battery State-of-Charge Estimator Based on FBG-Based Strain Sensor and Employing Machine Learning
A real-time state-of-charge (SOC) estimator based on the signals obtained from a Fibre Bragg Grating (FBG)-based sensor system is reported. The estimator has used a dynamic time-warping algorithm to determine the best fit, employing previously obtained experimental data. The strain data used were ob...
Saved in:
Published in: | IEEE sensors journal 2021-01, Vol.21 (2), p.1453-1460 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A real-time state-of-charge (SOC) estimator based on the signals obtained from a Fibre Bragg Grating (FBG)-based sensor system is reported. The estimator has used a dynamic time-warping algorithm to determine the best fit, employing previously obtained experimental data. The strain data used were obtained from the optical signal monitored, providing the input to a supervised learning algorithm. The results achieved show a good match with those from conventional techniques, achieving a ~2% accuracy with a ~1% SOC resolution. The system has been successfully applied to a 'proof of concept' demonstrator, using a battery-operated train, illustrating as a result the way in which the real-time SOC estimator could be employed to enhance safety in the growing electrical vehicle industry. |
---|---|
ISSN: | 1530-437X 1558-1748 |
DOI: | 10.1109/JSEN.2020.3016080 |