Loading…
Kinetic relations and local energy balance for LEFM from a nonlocal peridynamic model
A simple nonlocal field theory of peridynamic type is applied to model brittle fracture. The kinetic relation for the crack tip velocity given by Linear Elastic Fracture Mechanics (LEFM) is recovered directly from the nonlocal dynamics, this is seen both theoretically and in simulations. An explicit...
Saved in:
Published in: | International journal of fracture 2020-11, Vol.226 (1), p.81-95 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-1fc6c235d7ddda20aa6a18e51fbd21f41451ed0e66696e6a465ce01bc07e12353 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-1fc6c235d7ddda20aa6a18e51fbd21f41451ed0e66696e6a465ce01bc07e12353 |
container_end_page | 95 |
container_issue | 1 |
container_start_page | 81 |
container_title | International journal of fracture |
container_volume | 226 |
creator | Jha, Prashant K. Lipton, Robert P. |
description | A simple nonlocal field theory of peridynamic type is applied to model brittle fracture. The kinetic relation for the crack tip velocity given by Linear Elastic Fracture Mechanics (LEFM) is recovered directly from the nonlocal dynamics, this is seen both theoretically and in simulations. An explicit formula for the change of internal energy inside a neighborhood enclosing the crack tip is found for the nonlocal model and applied to LEFM. |
doi_str_mv | 10.1007/s10704-020-00480-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471924141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471924141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1fc6c235d7ddda20aa6a18e51fbd21f41451ed0e66696e6a465ce01bc07e12353</originalsourceid><addsrcrecordid>eNp9kDFPwzAQRi0EEqXwB5gsMQfunMRuRlS1gChiobPl2pcqVWoXOx367zEEiY3Ft7z3WXqM3SLcI4B6SAgKqgIEFADVLL9nbIK1KgshVXnOJlAqWTSVaC7ZVUo7AGjUrJqw9Wvnaegsj9SboQs-ceMd74M1PSdPcXviG9Mbb4m3IfLVYvnG2xj23HAf_MgdKHbu5M0-7-yDo_6aXbSmT3Tze6dsvVx8zJ-L1fvTy_xxVdgSm6HA1korytop55wRYIw0OKMa240T2FZY1UgOSErZSJKmkrUlwI0FRZi9csruxt1DDJ9HSoPehWP0-UstKoWNyBOYKTFSNoaUIrX6ELu9iSeNoL_z6TGfzvn0Tz4NWSpHKWXYbyn-Tf9jfQEklHIs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471924141</pqid></control><display><type>article</type><title>Kinetic relations and local energy balance for LEFM from a nonlocal peridynamic model</title><source>Springer Link</source><creator>Jha, Prashant K. ; Lipton, Robert P.</creator><creatorcontrib>Jha, Prashant K. ; Lipton, Robert P.</creatorcontrib><description>A simple nonlocal field theory of peridynamic type is applied to model brittle fracture. The kinetic relation for the crack tip velocity given by Linear Elastic Fracture Mechanics (LEFM) is recovered directly from the nonlocal dynamics, this is seen both theoretically and in simulations. An explicit formula for the change of internal energy inside a neighborhood enclosing the crack tip is found for the nonlocal model and applied to LEFM.</description><identifier>ISSN: 0376-9429</identifier><identifier>EISSN: 1573-2673</identifier><identifier>DOI: 10.1007/s10704-020-00480-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Civil Engineering ; Classical Mechanics ; Crack tips ; Field theory ; Fracture mechanics ; Internal energy ; Linear elastic fracture mechanics ; Materials Science ; Mechanical Engineering ; Original Paper</subject><ispartof>International journal of fracture, 2020-11, Vol.226 (1), p.81-95</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1fc6c235d7ddda20aa6a18e51fbd21f41451ed0e66696e6a465ce01bc07e12353</citedby><cites>FETCH-LOGICAL-c319t-1fc6c235d7ddda20aa6a18e51fbd21f41451ed0e66696e6a465ce01bc07e12353</cites><orcidid>0000-0003-2158-364X ; 0000-0002-1382-3204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jha, Prashant K.</creatorcontrib><creatorcontrib>Lipton, Robert P.</creatorcontrib><title>Kinetic relations and local energy balance for LEFM from a nonlocal peridynamic model</title><title>International journal of fracture</title><addtitle>Int J Fract</addtitle><description>A simple nonlocal field theory of peridynamic type is applied to model brittle fracture. The kinetic relation for the crack tip velocity given by Linear Elastic Fracture Mechanics (LEFM) is recovered directly from the nonlocal dynamics, this is seen both theoretically and in simulations. An explicit formula for the change of internal energy inside a neighborhood enclosing the crack tip is found for the nonlocal model and applied to LEFM.</description><subject>Automotive Engineering</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Crack tips</subject><subject>Field theory</subject><subject>Fracture mechanics</subject><subject>Internal energy</subject><subject>Linear elastic fracture mechanics</subject><subject>Materials Science</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><issn>0376-9429</issn><issn>1573-2673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQRi0EEqXwB5gsMQfunMRuRlS1gChiobPl2pcqVWoXOx367zEEiY3Ft7z3WXqM3SLcI4B6SAgKqgIEFADVLL9nbIK1KgshVXnOJlAqWTSVaC7ZVUo7AGjUrJqw9Wvnaegsj9SboQs-ceMd74M1PSdPcXviG9Mbb4m3IfLVYvnG2xj23HAf_MgdKHbu5M0-7-yDo_6aXbSmT3Tze6dsvVx8zJ-L1fvTy_xxVdgSm6HA1korytop55wRYIw0OKMa240T2FZY1UgOSErZSJKmkrUlwI0FRZi9csruxt1DDJ9HSoPehWP0-UstKoWNyBOYKTFSNoaUIrX6ELu9iSeNoL_z6TGfzvn0Tz4NWSpHKWXYbyn-Tf9jfQEklHIs</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Jha, Prashant K.</creator><creator>Lipton, Robert P.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-2158-364X</orcidid><orcidid>https://orcid.org/0000-0002-1382-3204</orcidid></search><sort><creationdate>20201101</creationdate><title>Kinetic relations and local energy balance for LEFM from a nonlocal peridynamic model</title><author>Jha, Prashant K. ; Lipton, Robert P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1fc6c235d7ddda20aa6a18e51fbd21f41451ed0e66696e6a465ce01bc07e12353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automotive Engineering</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Crack tips</topic><topic>Field theory</topic><topic>Fracture mechanics</topic><topic>Internal energy</topic><topic>Linear elastic fracture mechanics</topic><topic>Materials Science</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jha, Prashant K.</creatorcontrib><creatorcontrib>Lipton, Robert P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of fracture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jha, Prashant K.</au><au>Lipton, Robert P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic relations and local energy balance for LEFM from a nonlocal peridynamic model</atitle><jtitle>International journal of fracture</jtitle><stitle>Int J Fract</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>226</volume><issue>1</issue><spage>81</spage><epage>95</epage><pages>81-95</pages><issn>0376-9429</issn><eissn>1573-2673</eissn><abstract>A simple nonlocal field theory of peridynamic type is applied to model brittle fracture. The kinetic relation for the crack tip velocity given by Linear Elastic Fracture Mechanics (LEFM) is recovered directly from the nonlocal dynamics, this is seen both theoretically and in simulations. An explicit formula for the change of internal energy inside a neighborhood enclosing the crack tip is found for the nonlocal model and applied to LEFM.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10704-020-00480-0</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2158-364X</orcidid><orcidid>https://orcid.org/0000-0002-1382-3204</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0376-9429 |
ispartof | International journal of fracture, 2020-11, Vol.226 (1), p.81-95 |
issn | 0376-9429 1573-2673 |
language | eng |
recordid | cdi_proquest_journals_2471924141 |
source | Springer Link |
subjects | Automotive Engineering Characterization and Evaluation of Materials Chemistry and Materials Science Civil Engineering Classical Mechanics Crack tips Field theory Fracture mechanics Internal energy Linear elastic fracture mechanics Materials Science Mechanical Engineering Original Paper |
title | Kinetic relations and local energy balance for LEFM from a nonlocal peridynamic model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20relations%20and%20local%20energy%20balance%20for%20LEFM%20from%20a%20nonlocal%20peridynamic%20model&rft.jtitle=International%20journal%20of%20fracture&rft.au=Jha,%20Prashant%20K.&rft.date=2020-11-01&rft.volume=226&rft.issue=1&rft.spage=81&rft.epage=95&rft.pages=81-95&rft.issn=0376-9429&rft.eissn=1573-2673&rft_id=info:doi/10.1007/s10704-020-00480-0&rft_dat=%3Cproquest_cross%3E2471924141%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-1fc6c235d7ddda20aa6a18e51fbd21f41451ed0e66696e6a465ce01bc07e12353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471924141&rft_id=info:pmid/&rfr_iscdi=true |