Loading…

Learning to Localize Through Compressed Binary Maps

One of the main difficulties of scaling current localization systems to large environments is the on-board storage required for the maps. In this paper we propose to learn to compress the map representation such that it is optimal for the localization task. As a consequence, higher compression rates...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-12
Main Authors: Wei, Xinkai, Bârsan, Ioan Andrei, Wang, Shenlong, Martinez, Julieta, Urtasun, Raquel
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wei, Xinkai
Bârsan, Ioan Andrei
Wang, Shenlong
Martinez, Julieta
Urtasun, Raquel
description One of the main difficulties of scaling current localization systems to large environments is the on-board storage required for the maps. In this paper we propose to learn to compress the map representation such that it is optimal for the localization task. As a consequence, higher compression rates can be achieved without loss of localization accuracy when compared to standard coding schemes that optimize for reconstruction, thus ignoring the end task. Our experiments show that it is possible to learn a task-specific compression which reduces storage requirements by two orders of magnitude over general-purpose codecs such as WebP without sacrificing performance.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2471944430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471944430</sourcerecordid><originalsourceid>FETCH-proquest_journals_24719444303</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9klNLMrLzEtXKMlX8MlPTszJrEpVCMkoyi9Nz1Bwzs8tKEotLk5NUXDKzEssqlTwTSwo5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMTc0NLExMTYwNj4lQBAP9cM_Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471944430</pqid></control><display><type>article</type><title>Learning to Localize Through Compressed Binary Maps</title><source>Publicly Available Content (ProQuest)</source><creator>Wei, Xinkai ; Bârsan, Ioan Andrei ; Wang, Shenlong ; Martinez, Julieta ; Urtasun, Raquel</creator><creatorcontrib>Wei, Xinkai ; Bârsan, Ioan Andrei ; Wang, Shenlong ; Martinez, Julieta ; Urtasun, Raquel</creatorcontrib><description>One of the main difficulties of scaling current localization systems to large environments is the on-board storage required for the maps. In this paper we propose to learn to compress the map representation such that it is optimal for the localization task. As a consequence, higher compression rates can be achieved without loss of localization accuracy when compared to standard coding schemes that optimize for reconstruction, thus ignoring the end task. Our experiments show that it is possible to learn a task-specific compression which reduces storage requirements by two orders of magnitude over general-purpose codecs such as WebP without sacrificing performance.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Codec ; Optimization</subject><ispartof>arXiv.org, 2020-12</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2471944430?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Wei, Xinkai</creatorcontrib><creatorcontrib>Bârsan, Ioan Andrei</creatorcontrib><creatorcontrib>Wang, Shenlong</creatorcontrib><creatorcontrib>Martinez, Julieta</creatorcontrib><creatorcontrib>Urtasun, Raquel</creatorcontrib><title>Learning to Localize Through Compressed Binary Maps</title><title>arXiv.org</title><description>One of the main difficulties of scaling current localization systems to large environments is the on-board storage required for the maps. In this paper we propose to learn to compress the map representation such that it is optimal for the localization task. As a consequence, higher compression rates can be achieved without loss of localization accuracy when compared to standard coding schemes that optimize for reconstruction, thus ignoring the end task. Our experiments show that it is possible to learn a task-specific compression which reduces storage requirements by two orders of magnitude over general-purpose codecs such as WebP without sacrificing performance.</description><subject>Codec</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9klNLMrLzEtXKMlX8MlPTszJrEpVCMkoyi9Nz1Bwzs8tKEotLk5NUXDKzEssqlTwTSwo5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMTc0NLExMTYwNj4lQBAP9cM_Y</recordid><startdate>20201220</startdate><enddate>20201220</enddate><creator>Wei, Xinkai</creator><creator>Bârsan, Ioan Andrei</creator><creator>Wang, Shenlong</creator><creator>Martinez, Julieta</creator><creator>Urtasun, Raquel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201220</creationdate><title>Learning to Localize Through Compressed Binary Maps</title><author>Wei, Xinkai ; Bârsan, Ioan Andrei ; Wang, Shenlong ; Martinez, Julieta ; Urtasun, Raquel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24719444303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Codec</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Wei, Xinkai</creatorcontrib><creatorcontrib>Bârsan, Ioan Andrei</creatorcontrib><creatorcontrib>Wang, Shenlong</creatorcontrib><creatorcontrib>Martinez, Julieta</creatorcontrib><creatorcontrib>Urtasun, Raquel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Xinkai</au><au>Bârsan, Ioan Andrei</au><au>Wang, Shenlong</au><au>Martinez, Julieta</au><au>Urtasun, Raquel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Learning to Localize Through Compressed Binary Maps</atitle><jtitle>arXiv.org</jtitle><date>2020-12-20</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>One of the main difficulties of scaling current localization systems to large environments is the on-board storage required for the maps. In this paper we propose to learn to compress the map representation such that it is optimal for the localization task. As a consequence, higher compression rates can be achieved without loss of localization accuracy when compared to standard coding schemes that optimize for reconstruction, thus ignoring the end task. Our experiments show that it is possible to learn a task-specific compression which reduces storage requirements by two orders of magnitude over general-purpose codecs such as WebP without sacrificing performance.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2471944430
source Publicly Available Content (ProQuest)
subjects Codec
Optimization
title Learning to Localize Through Compressed Binary Maps
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Learning%20to%20Localize%20Through%20Compressed%20Binary%20Maps&rft.jtitle=arXiv.org&rft.au=Wei,%20Xinkai&rft.date=2020-12-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2471944430%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24719444303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471944430&rft_id=info:pmid/&rfr_iscdi=true