Loading…

Distributionally Robust Optimal Power Flow in Multi-Microgrids With Decomposition and Guaranteed Convergence

Multi-microgrids (MMGs) are emerging as a cost-effective solution to provide ancillary services. To reconcile external reserve provision and internal risk hedging for MMGs, a novel comprehensive multi-area dynamic optimal power flow (MADOPF) model is established, where energy-reserve co-optimization...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on smart grid 2021-01, Vol.12 (1), p.43-55
Main Authors: Huang, Wanjun, Zheng, Weiye, Hill, David J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-510d09530a011c514f42018663fc4532b580dfc9262285195d383149c1f5fe743
cites cdi_FETCH-LOGICAL-c291t-510d09530a011c514f42018663fc4532b580dfc9262285195d383149c1f5fe743
container_end_page 55
container_issue 1
container_start_page 43
container_title IEEE transactions on smart grid
container_volume 12
creator Huang, Wanjun
Zheng, Weiye
Hill, David J.
description Multi-microgrids (MMGs) are emerging as a cost-effective solution to provide ancillary services. To reconcile external reserve provision and internal risk hedging for MMGs, a novel comprehensive multi-area dynamic optimal power flow (MADOPF) model is established, where energy-reserve co-optimization, three-phase unbalanced network intrinsics and dual control time-scales are all addressed. To better hedge the uncertainties of distributed generation and loads, distributionally robust model predictive control (MPC) is applied to the MADOPF problem. To preserve operational independence and information privacy for each microgrid, decomposition of the nonconvex model is devised with guaranteed convergence. Numerical tests on a two-area system and a real large-scale 16-area system derived from Shandong Power Grid validate the effectiveness of the proposed method. The advantages are demonstrated by the comparison with the conventional MPC, stochastic and robust methods.
doi_str_mv 10.1109/TSG.2020.3012025
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2472317300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9149692</ieee_id><sourcerecordid>2472317300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-510d09530a011c514f42018663fc4532b580dfc9262285195d383149c1f5fe743</originalsourceid><addsrcrecordid>eNo9kEFPAjEQhRujiQS5m3hp4nmx026X7dGAoAkEoxiPzdLtYsmyXduuhH9vCYS5vDm8N5P3IXQPZAhAxNPqczakhJIhIxCVX6EeiFQkjGRwfdk5u0UD77ckDmMso6KH6onxwZl1F4xtiro-4A-77nzAyzaYXVHjd7vXDk9ru8emwYuuDiZZGOXsxpnS428TfvBEK7trrTfHI7hoSjzrClc0QesSj23zp91GN0rfoZuqqL0enLWPvqYvq_FrMl_O3sbP80RRASHhQEoiOCMFAVAc0iqlBPIsY5VKOaNrnpOyUoJmlOYcBC9ZziAVCipe6VHK-ujxdLd19rfTPsit7Vys5yVNR5TBiEUCfUROrljGe6cr2bpY2R0kEHnEKiNWecQqz1hj5OEUMVrri13E35mg7B8C8XKd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2472317300</pqid></control><display><type>article</type><title>Distributionally Robust Optimal Power Flow in Multi-Microgrids With Decomposition and Guaranteed Convergence</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Huang, Wanjun ; Zheng, Weiye ; Hill, David J.</creator><creatorcontrib>Huang, Wanjun ; Zheng, Weiye ; Hill, David J.</creatorcontrib><description>Multi-microgrids (MMGs) are emerging as a cost-effective solution to provide ancillary services. To reconcile external reserve provision and internal risk hedging for MMGs, a novel comprehensive multi-area dynamic optimal power flow (MADOPF) model is established, where energy-reserve co-optimization, three-phase unbalanced network intrinsics and dual control time-scales are all addressed. To better hedge the uncertainties of distributed generation and loads, distributionally robust model predictive control (MPC) is applied to the MADOPF problem. To preserve operational independence and information privacy for each microgrid, decomposition of the nonconvex model is devised with guaranteed convergence. Numerical tests on a two-area system and a real large-scale 16-area system derived from Shandong Power Grid validate the effectiveness of the proposed method. The advantages are demonstrated by the comparison with the conventional MPC, stochastic and robust methods.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2020.3012025</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Ancillary services ; Convergence ; Decomposition ; Distributed generation ; Distributed optimization ; Electric power grids ; Fuels ; Generators ; ISO ; Load flow ; optimal power flow ; Optimization ; Power flow ; Predictive control ; Robust control ; Robustness ; Stress concentration ; unbalanced multi-microgrids ; Uncertainty</subject><ispartof>IEEE transactions on smart grid, 2021-01, Vol.12 (1), p.43-55</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-510d09530a011c514f42018663fc4532b580dfc9262285195d383149c1f5fe743</citedby><cites>FETCH-LOGICAL-c291t-510d09530a011c514f42018663fc4532b580dfc9262285195d383149c1f5fe743</cites><orcidid>0000-0002-8387-1973 ; 0000-0003-4036-0839 ; 0000-0002-6851-3705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9149692$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Huang, Wanjun</creatorcontrib><creatorcontrib>Zheng, Weiye</creatorcontrib><creatorcontrib>Hill, David J.</creatorcontrib><title>Distributionally Robust Optimal Power Flow in Multi-Microgrids With Decomposition and Guaranteed Convergence</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Multi-microgrids (MMGs) are emerging as a cost-effective solution to provide ancillary services. To reconcile external reserve provision and internal risk hedging for MMGs, a novel comprehensive multi-area dynamic optimal power flow (MADOPF) model is established, where energy-reserve co-optimization, three-phase unbalanced network intrinsics and dual control time-scales are all addressed. To better hedge the uncertainties of distributed generation and loads, distributionally robust model predictive control (MPC) is applied to the MADOPF problem. To preserve operational independence and information privacy for each microgrid, decomposition of the nonconvex model is devised with guaranteed convergence. Numerical tests on a two-area system and a real large-scale 16-area system derived from Shandong Power Grid validate the effectiveness of the proposed method. The advantages are demonstrated by the comparison with the conventional MPC, stochastic and robust methods.</description><subject>Ancillary services</subject><subject>Convergence</subject><subject>Decomposition</subject><subject>Distributed generation</subject><subject>Distributed optimization</subject><subject>Electric power grids</subject><subject>Fuels</subject><subject>Generators</subject><subject>ISO</subject><subject>Load flow</subject><subject>optimal power flow</subject><subject>Optimization</subject><subject>Power flow</subject><subject>Predictive control</subject><subject>Robust control</subject><subject>Robustness</subject><subject>Stress concentration</subject><subject>unbalanced multi-microgrids</subject><subject>Uncertainty</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPAjEQhRujiQS5m3hp4nmx026X7dGAoAkEoxiPzdLtYsmyXduuhH9vCYS5vDm8N5P3IXQPZAhAxNPqczakhJIhIxCVX6EeiFQkjGRwfdk5u0UD77ckDmMso6KH6onxwZl1F4xtiro-4A-77nzAyzaYXVHjd7vXDk9ru8emwYuuDiZZGOXsxpnS428TfvBEK7trrTfHI7hoSjzrClc0QesSj23zp91GN0rfoZuqqL0enLWPvqYvq_FrMl_O3sbP80RRASHhQEoiOCMFAVAc0iqlBPIsY5VKOaNrnpOyUoJmlOYcBC9ZziAVCipe6VHK-ujxdLd19rfTPsit7Vys5yVNR5TBiEUCfUROrljGe6cr2bpY2R0kEHnEKiNWecQqz1hj5OEUMVrri13E35mg7B8C8XKd</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Huang, Wanjun</creator><creator>Zheng, Weiye</creator><creator>Hill, David J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8387-1973</orcidid><orcidid>https://orcid.org/0000-0003-4036-0839</orcidid><orcidid>https://orcid.org/0000-0002-6851-3705</orcidid></search><sort><creationdate>202101</creationdate><title>Distributionally Robust Optimal Power Flow in Multi-Microgrids With Decomposition and Guaranteed Convergence</title><author>Huang, Wanjun ; Zheng, Weiye ; Hill, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-510d09530a011c514f42018663fc4532b580dfc9262285195d383149c1f5fe743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ancillary services</topic><topic>Convergence</topic><topic>Decomposition</topic><topic>Distributed generation</topic><topic>Distributed optimization</topic><topic>Electric power grids</topic><topic>Fuels</topic><topic>Generators</topic><topic>ISO</topic><topic>Load flow</topic><topic>optimal power flow</topic><topic>Optimization</topic><topic>Power flow</topic><topic>Predictive control</topic><topic>Robust control</topic><topic>Robustness</topic><topic>Stress concentration</topic><topic>unbalanced multi-microgrids</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Wanjun</creatorcontrib><creatorcontrib>Zheng, Weiye</creatorcontrib><creatorcontrib>Hill, David J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Wanjun</au><au>Zheng, Weiye</au><au>Hill, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributionally Robust Optimal Power Flow in Multi-Microgrids With Decomposition and Guaranteed Convergence</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2021-01</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>43</spage><epage>55</epage><pages>43-55</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Multi-microgrids (MMGs) are emerging as a cost-effective solution to provide ancillary services. To reconcile external reserve provision and internal risk hedging for MMGs, a novel comprehensive multi-area dynamic optimal power flow (MADOPF) model is established, where energy-reserve co-optimization, three-phase unbalanced network intrinsics and dual control time-scales are all addressed. To better hedge the uncertainties of distributed generation and loads, distributionally robust model predictive control (MPC) is applied to the MADOPF problem. To preserve operational independence and information privacy for each microgrid, decomposition of the nonconvex model is devised with guaranteed convergence. Numerical tests on a two-area system and a real large-scale 16-area system derived from Shandong Power Grid validate the effectiveness of the proposed method. The advantages are demonstrated by the comparison with the conventional MPC, stochastic and robust methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2020.3012025</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8387-1973</orcidid><orcidid>https://orcid.org/0000-0003-4036-0839</orcidid><orcidid>https://orcid.org/0000-0002-6851-3705</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2021-01, Vol.12 (1), p.43-55
issn 1949-3053
1949-3061
language eng
recordid cdi_proquest_journals_2472317300
source IEEE Electronic Library (IEL) Journals
subjects Ancillary services
Convergence
Decomposition
Distributed generation
Distributed optimization
Electric power grids
Fuels
Generators
ISO
Load flow
optimal power flow
Optimization
Power flow
Predictive control
Robust control
Robustness
Stress concentration
unbalanced multi-microgrids
Uncertainty
title Distributionally Robust Optimal Power Flow in Multi-Microgrids With Decomposition and Guaranteed Convergence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A51%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributionally%20Robust%20Optimal%20Power%20Flow%20in%20Multi-Microgrids%20With%20Decomposition%20and%20Guaranteed%20Convergence&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Huang,%20Wanjun&rft.date=2021-01&rft.volume=12&rft.issue=1&rft.spage=43&rft.epage=55&rft.pages=43-55&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2020.3012025&rft_dat=%3Cproquest_cross%3E2472317300%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-510d09530a011c514f42018663fc4532b580dfc9262285195d383149c1f5fe743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2472317300&rft_id=info:pmid/&rft_ieee_id=9149692&rfr_iscdi=true