Loading…
Distributionally Robust Optimal Power Flow in Multi-Microgrids With Decomposition and Guaranteed Convergence
Multi-microgrids (MMGs) are emerging as a cost-effective solution to provide ancillary services. To reconcile external reserve provision and internal risk hedging for MMGs, a novel comprehensive multi-area dynamic optimal power flow (MADOPF) model is established, where energy-reserve co-optimization...
Saved in:
Published in: | IEEE transactions on smart grid 2021-01, Vol.12 (1), p.43-55 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-510d09530a011c514f42018663fc4532b580dfc9262285195d383149c1f5fe743 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-510d09530a011c514f42018663fc4532b580dfc9262285195d383149c1f5fe743 |
container_end_page | 55 |
container_issue | 1 |
container_start_page | 43 |
container_title | IEEE transactions on smart grid |
container_volume | 12 |
creator | Huang, Wanjun Zheng, Weiye Hill, David J. |
description | Multi-microgrids (MMGs) are emerging as a cost-effective solution to provide ancillary services. To reconcile external reserve provision and internal risk hedging for MMGs, a novel comprehensive multi-area dynamic optimal power flow (MADOPF) model is established, where energy-reserve co-optimization, three-phase unbalanced network intrinsics and dual control time-scales are all addressed. To better hedge the uncertainties of distributed generation and loads, distributionally robust model predictive control (MPC) is applied to the MADOPF problem. To preserve operational independence and information privacy for each microgrid, decomposition of the nonconvex model is devised with guaranteed convergence. Numerical tests on a two-area system and a real large-scale 16-area system derived from Shandong Power Grid validate the effectiveness of the proposed method. The advantages are demonstrated by the comparison with the conventional MPC, stochastic and robust methods. |
doi_str_mv | 10.1109/TSG.2020.3012025 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2472317300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9149692</ieee_id><sourcerecordid>2472317300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-510d09530a011c514f42018663fc4532b580dfc9262285195d383149c1f5fe743</originalsourceid><addsrcrecordid>eNo9kEFPAjEQhRujiQS5m3hp4nmx026X7dGAoAkEoxiPzdLtYsmyXduuhH9vCYS5vDm8N5P3IXQPZAhAxNPqczakhJIhIxCVX6EeiFQkjGRwfdk5u0UD77ckDmMso6KH6onxwZl1F4xtiro-4A-77nzAyzaYXVHjd7vXDk9ru8emwYuuDiZZGOXsxpnS428TfvBEK7trrTfHI7hoSjzrClc0QesSj23zp91GN0rfoZuqqL0enLWPvqYvq_FrMl_O3sbP80RRASHhQEoiOCMFAVAc0iqlBPIsY5VKOaNrnpOyUoJmlOYcBC9ZziAVCipe6VHK-ujxdLd19rfTPsit7Vys5yVNR5TBiEUCfUROrljGe6cr2bpY2R0kEHnEKiNWecQqz1hj5OEUMVrri13E35mg7B8C8XKd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2472317300</pqid></control><display><type>article</type><title>Distributionally Robust Optimal Power Flow in Multi-Microgrids With Decomposition and Guaranteed Convergence</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Huang, Wanjun ; Zheng, Weiye ; Hill, David J.</creator><creatorcontrib>Huang, Wanjun ; Zheng, Weiye ; Hill, David J.</creatorcontrib><description>Multi-microgrids (MMGs) are emerging as a cost-effective solution to provide ancillary services. To reconcile external reserve provision and internal risk hedging for MMGs, a novel comprehensive multi-area dynamic optimal power flow (MADOPF) model is established, where energy-reserve co-optimization, three-phase unbalanced network intrinsics and dual control time-scales are all addressed. To better hedge the uncertainties of distributed generation and loads, distributionally robust model predictive control (MPC) is applied to the MADOPF problem. To preserve operational independence and information privacy for each microgrid, decomposition of the nonconvex model is devised with guaranteed convergence. Numerical tests on a two-area system and a real large-scale 16-area system derived from Shandong Power Grid validate the effectiveness of the proposed method. The advantages are demonstrated by the comparison with the conventional MPC, stochastic and robust methods.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2020.3012025</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Ancillary services ; Convergence ; Decomposition ; Distributed generation ; Distributed optimization ; Electric power grids ; Fuels ; Generators ; ISO ; Load flow ; optimal power flow ; Optimization ; Power flow ; Predictive control ; Robust control ; Robustness ; Stress concentration ; unbalanced multi-microgrids ; Uncertainty</subject><ispartof>IEEE transactions on smart grid, 2021-01, Vol.12 (1), p.43-55</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-510d09530a011c514f42018663fc4532b580dfc9262285195d383149c1f5fe743</citedby><cites>FETCH-LOGICAL-c291t-510d09530a011c514f42018663fc4532b580dfc9262285195d383149c1f5fe743</cites><orcidid>0000-0002-8387-1973 ; 0000-0003-4036-0839 ; 0000-0002-6851-3705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9149692$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Huang, Wanjun</creatorcontrib><creatorcontrib>Zheng, Weiye</creatorcontrib><creatorcontrib>Hill, David J.</creatorcontrib><title>Distributionally Robust Optimal Power Flow in Multi-Microgrids With Decomposition and Guaranteed Convergence</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Multi-microgrids (MMGs) are emerging as a cost-effective solution to provide ancillary services. To reconcile external reserve provision and internal risk hedging for MMGs, a novel comprehensive multi-area dynamic optimal power flow (MADOPF) model is established, where energy-reserve co-optimization, three-phase unbalanced network intrinsics and dual control time-scales are all addressed. To better hedge the uncertainties of distributed generation and loads, distributionally robust model predictive control (MPC) is applied to the MADOPF problem. To preserve operational independence and information privacy for each microgrid, decomposition of the nonconvex model is devised with guaranteed convergence. Numerical tests on a two-area system and a real large-scale 16-area system derived from Shandong Power Grid validate the effectiveness of the proposed method. The advantages are demonstrated by the comparison with the conventional MPC, stochastic and robust methods.</description><subject>Ancillary services</subject><subject>Convergence</subject><subject>Decomposition</subject><subject>Distributed generation</subject><subject>Distributed optimization</subject><subject>Electric power grids</subject><subject>Fuels</subject><subject>Generators</subject><subject>ISO</subject><subject>Load flow</subject><subject>optimal power flow</subject><subject>Optimization</subject><subject>Power flow</subject><subject>Predictive control</subject><subject>Robust control</subject><subject>Robustness</subject><subject>Stress concentration</subject><subject>unbalanced multi-microgrids</subject><subject>Uncertainty</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPAjEQhRujiQS5m3hp4nmx026X7dGAoAkEoxiPzdLtYsmyXduuhH9vCYS5vDm8N5P3IXQPZAhAxNPqczakhJIhIxCVX6EeiFQkjGRwfdk5u0UD77ckDmMso6KH6onxwZl1F4xtiro-4A-77nzAyzaYXVHjd7vXDk9ru8emwYuuDiZZGOXsxpnS428TfvBEK7trrTfHI7hoSjzrClc0QesSj23zp91GN0rfoZuqqL0enLWPvqYvq_FrMl_O3sbP80RRASHhQEoiOCMFAVAc0iqlBPIsY5VKOaNrnpOyUoJmlOYcBC9ZziAVCipe6VHK-ujxdLd19rfTPsit7Vys5yVNR5TBiEUCfUROrljGe6cr2bpY2R0kEHnEKiNWecQqz1hj5OEUMVrri13E35mg7B8C8XKd</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Huang, Wanjun</creator><creator>Zheng, Weiye</creator><creator>Hill, David J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8387-1973</orcidid><orcidid>https://orcid.org/0000-0003-4036-0839</orcidid><orcidid>https://orcid.org/0000-0002-6851-3705</orcidid></search><sort><creationdate>202101</creationdate><title>Distributionally Robust Optimal Power Flow in Multi-Microgrids With Decomposition and Guaranteed Convergence</title><author>Huang, Wanjun ; Zheng, Weiye ; Hill, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-510d09530a011c514f42018663fc4532b580dfc9262285195d383149c1f5fe743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ancillary services</topic><topic>Convergence</topic><topic>Decomposition</topic><topic>Distributed generation</topic><topic>Distributed optimization</topic><topic>Electric power grids</topic><topic>Fuels</topic><topic>Generators</topic><topic>ISO</topic><topic>Load flow</topic><topic>optimal power flow</topic><topic>Optimization</topic><topic>Power flow</topic><topic>Predictive control</topic><topic>Robust control</topic><topic>Robustness</topic><topic>Stress concentration</topic><topic>unbalanced multi-microgrids</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Wanjun</creatorcontrib><creatorcontrib>Zheng, Weiye</creatorcontrib><creatorcontrib>Hill, David J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Wanjun</au><au>Zheng, Weiye</au><au>Hill, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributionally Robust Optimal Power Flow in Multi-Microgrids With Decomposition and Guaranteed Convergence</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2021-01</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>43</spage><epage>55</epage><pages>43-55</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Multi-microgrids (MMGs) are emerging as a cost-effective solution to provide ancillary services. To reconcile external reserve provision and internal risk hedging for MMGs, a novel comprehensive multi-area dynamic optimal power flow (MADOPF) model is established, where energy-reserve co-optimization, three-phase unbalanced network intrinsics and dual control time-scales are all addressed. To better hedge the uncertainties of distributed generation and loads, distributionally robust model predictive control (MPC) is applied to the MADOPF problem. To preserve operational independence and information privacy for each microgrid, decomposition of the nonconvex model is devised with guaranteed convergence. Numerical tests on a two-area system and a real large-scale 16-area system derived from Shandong Power Grid validate the effectiveness of the proposed method. The advantages are demonstrated by the comparison with the conventional MPC, stochastic and robust methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2020.3012025</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8387-1973</orcidid><orcidid>https://orcid.org/0000-0003-4036-0839</orcidid><orcidid>https://orcid.org/0000-0002-6851-3705</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1949-3053 |
ispartof | IEEE transactions on smart grid, 2021-01, Vol.12 (1), p.43-55 |
issn | 1949-3053 1949-3061 |
language | eng |
recordid | cdi_proquest_journals_2472317300 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Ancillary services Convergence Decomposition Distributed generation Distributed optimization Electric power grids Fuels Generators ISO Load flow optimal power flow Optimization Power flow Predictive control Robust control Robustness Stress concentration unbalanced multi-microgrids Uncertainty |
title | Distributionally Robust Optimal Power Flow in Multi-Microgrids With Decomposition and Guaranteed Convergence |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A51%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributionally%20Robust%20Optimal%20Power%20Flow%20in%20Multi-Microgrids%20With%20Decomposition%20and%20Guaranteed%20Convergence&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Huang,%20Wanjun&rft.date=2021-01&rft.volume=12&rft.issue=1&rft.spage=43&rft.epage=55&rft.pages=43-55&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2020.3012025&rft_dat=%3Cproquest_cross%3E2472317300%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-510d09530a011c514f42018663fc4532b580dfc9262285195d383149c1f5fe743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2472317300&rft_id=info:pmid/&rft_ieee_id=9149692&rfr_iscdi=true |