Loading…

Acceleration of relativistic beams using laser-generated terahertz pulses

Particle accelerators driven by laser-generated terahertz (THz) pulses promise unprecedented control over the energy–time phase space of particle bunches compared with conventional radiofrequency technology. Here we demonstrate acceleration of a relativistic electron beam in a THz-driven linear acce...

Full description

Saved in:
Bibliographic Details
Published in:Nature photonics 2020-12, Vol.14 (12), p.755-759
Main Authors: Hibberd, Morgan T., Healy, Alisa L., Lake, Daniel S., Georgiadis, Vasileios, Smith, Elliott J. H., Finlay, Oliver J., Pacey, Thomas H., Jones, James K., Saveliev, Yuri, Walsh, David A., Snedden, Edward W., Appleby, Robert B., Burt, Graeme, Graham, Darren M., Jamison, Steven P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-a433d8284ee7fb85400d8f43bea3b66b5ffc40ebde129eae30bd7ae0871e3f9d3
cites cdi_FETCH-LOGICAL-c316t-a433d8284ee7fb85400d8f43bea3b66b5ffc40ebde129eae30bd7ae0871e3f9d3
container_end_page 759
container_issue 12
container_start_page 755
container_title Nature photonics
container_volume 14
creator Hibberd, Morgan T.
Healy, Alisa L.
Lake, Daniel S.
Georgiadis, Vasileios
Smith, Elliott J. H.
Finlay, Oliver J.
Pacey, Thomas H.
Jones, James K.
Saveliev, Yuri
Walsh, David A.
Snedden, Edward W.
Appleby, Robert B.
Burt, Graeme
Graham, Darren M.
Jamison, Steven P.
description Particle accelerators driven by laser-generated terahertz (THz) pulses promise unprecedented control over the energy–time phase space of particle bunches compared with conventional radiofrequency technology. Here we demonstrate acceleration of a relativistic electron beam in a THz-driven linear accelerator. Narrowband THz pulses were tuned to the phase-velocity-matched operating frequency of a rectangular dielectric-lined waveguide for extended collinear interaction with 35 MeV, 60 pC electron bunches, imparting multicycle energy modulation to chirped (6 ps) bunches and injection phase-dependent energy gain (up to 10 keV) to subcycle (2 ps) bunches. These proof-of-principle results establish a route to whole-bunch linear acceleration of subpicosecond particle beams, directly applicable to scaled-up and multistaged concepts capable of preserving beam quality, thus marking a key milestone for future THz-driven acceleration of relativistic beams. Relativistic 35 MeV electron bunches with charges of 60 pC are accelerated in a terahertz-wave-driven dielectric waveguide. When the terahertz pulse energy is 0.8 μJ, an accelerating gradient of 2 MeV m −1 and energy gain of 10 keV are achieved.
doi_str_mv 10.1038/s41566-020-0674-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473209778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473209778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a433d8284ee7fb85400d8f43bea3b66b5ffc40ebde129eae30bd7ae0871e3f9d3</originalsourceid><addsrcrecordid>eNp1kE1LxDAYhIMouK7-AG8Bz9E3H23S47L4sbDgRc8hbd_ULt12TVpBf71ZKnryNHN4ZgaGkGsOtxykuYuKZ3nOQACDXCvGT8iCa1UwZQp5-utNdk4uYtwBZLIQYkE2q6rCDoMb26Gng6cBu-Q_2ji2FS3R7SOdYts3tHMRA2uwP8JY0zHpG4bxix6mLmK8JGfeJXP1o0vy-nD_sn5i2-fHzXq1ZZXk-cickrI2wihE7UuTKYDaeCXTlCzzvMy8rxRgWSMXBTqUUNbaIRjNUfqilktyM_cewvA-YRztbphCnyatUFoKKLQ2ieIzVYUhxoDeHkK7d-HTcrDHx-z8mE2P2eNjlqeMmDMxsX2D4a_5_9A39iJvwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473209778</pqid></control><display><type>article</type><title>Acceleration of relativistic beams using laser-generated terahertz pulses</title><source>Springer Nature - Connect here FIRST to enable access</source><creator>Hibberd, Morgan T. ; Healy, Alisa L. ; Lake, Daniel S. ; Georgiadis, Vasileios ; Smith, Elliott J. H. ; Finlay, Oliver J. ; Pacey, Thomas H. ; Jones, James K. ; Saveliev, Yuri ; Walsh, David A. ; Snedden, Edward W. ; Appleby, Robert B. ; Burt, Graeme ; Graham, Darren M. ; Jamison, Steven P.</creator><creatorcontrib>Hibberd, Morgan T. ; Healy, Alisa L. ; Lake, Daniel S. ; Georgiadis, Vasileios ; Smith, Elliott J. H. ; Finlay, Oliver J. ; Pacey, Thomas H. ; Jones, James K. ; Saveliev, Yuri ; Walsh, David A. ; Snedden, Edward W. ; Appleby, Robert B. ; Burt, Graeme ; Graham, Darren M. ; Jamison, Steven P.</creatorcontrib><description>Particle accelerators driven by laser-generated terahertz (THz) pulses promise unprecedented control over the energy–time phase space of particle bunches compared with conventional radiofrequency technology. Here we demonstrate acceleration of a relativistic electron beam in a THz-driven linear accelerator. Narrowband THz pulses were tuned to the phase-velocity-matched operating frequency of a rectangular dielectric-lined waveguide for extended collinear interaction with 35 MeV, 60 pC electron bunches, imparting multicycle energy modulation to chirped (6 ps) bunches and injection phase-dependent energy gain (up to 10 keV) to subcycle (2 ps) bunches. These proof-of-principle results establish a route to whole-bunch linear acceleration of subpicosecond particle beams, directly applicable to scaled-up and multistaged concepts capable of preserving beam quality, thus marking a key milestone for future THz-driven acceleration of relativistic beams. Relativistic 35 MeV electron bunches with charges of 60 pC are accelerated in a terahertz-wave-driven dielectric waveguide. When the terahertz pulse energy is 0.8 μJ, an accelerating gradient of 2 MeV m −1 and energy gain of 10 keV are achieved.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-020-0674-1</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/399 ; 639/766/400 ; Acceleration ; Applied and Technical Physics ; Dielectric waveguides ; Electrons ; Energy ; Laser beams ; Narrowband ; Particle accelerators ; Particle beams ; Phase matching ; Physics ; Physics and Astronomy ; Quantum Physics ; Radio frequency ; Relativistic effects ; Relativistic electron beams ; Terahertz frequencies</subject><ispartof>Nature photonics, 2020-12, Vol.14 (12), p.755-759</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a433d8284ee7fb85400d8f43bea3b66b5ffc40ebde129eae30bd7ae0871e3f9d3</citedby><cites>FETCH-LOGICAL-c316t-a433d8284ee7fb85400d8f43bea3b66b5ffc40ebde129eae30bd7ae0871e3f9d3</cites><orcidid>0000-0001-8288-1216 ; 0000-0002-5246-7476 ; 0000-0002-0768-9299 ; 0000-0003-3510-6721 ; 0000-0001-9734-0543 ; 0000-0002-3691-2541 ; 0000-0002-4240-5888 ; 0000-0001-6234-9943 ; 0000-0001-8033-1923 ; 0000-0001-6529-2620 ; 0000-0001-7213-580X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hibberd, Morgan T.</creatorcontrib><creatorcontrib>Healy, Alisa L.</creatorcontrib><creatorcontrib>Lake, Daniel S.</creatorcontrib><creatorcontrib>Georgiadis, Vasileios</creatorcontrib><creatorcontrib>Smith, Elliott J. H.</creatorcontrib><creatorcontrib>Finlay, Oliver J.</creatorcontrib><creatorcontrib>Pacey, Thomas H.</creatorcontrib><creatorcontrib>Jones, James K.</creatorcontrib><creatorcontrib>Saveliev, Yuri</creatorcontrib><creatorcontrib>Walsh, David A.</creatorcontrib><creatorcontrib>Snedden, Edward W.</creatorcontrib><creatorcontrib>Appleby, Robert B.</creatorcontrib><creatorcontrib>Burt, Graeme</creatorcontrib><creatorcontrib>Graham, Darren M.</creatorcontrib><creatorcontrib>Jamison, Steven P.</creatorcontrib><title>Acceleration of relativistic beams using laser-generated terahertz pulses</title><title>Nature photonics</title><addtitle>Nat. Photonics</addtitle><description>Particle accelerators driven by laser-generated terahertz (THz) pulses promise unprecedented control over the energy–time phase space of particle bunches compared with conventional radiofrequency technology. Here we demonstrate acceleration of a relativistic electron beam in a THz-driven linear accelerator. Narrowband THz pulses were tuned to the phase-velocity-matched operating frequency of a rectangular dielectric-lined waveguide for extended collinear interaction with 35 MeV, 60 pC electron bunches, imparting multicycle energy modulation to chirped (6 ps) bunches and injection phase-dependent energy gain (up to 10 keV) to subcycle (2 ps) bunches. These proof-of-principle results establish a route to whole-bunch linear acceleration of subpicosecond particle beams, directly applicable to scaled-up and multistaged concepts capable of preserving beam quality, thus marking a key milestone for future THz-driven acceleration of relativistic beams. Relativistic 35 MeV electron bunches with charges of 60 pC are accelerated in a terahertz-wave-driven dielectric waveguide. When the terahertz pulse energy is 0.8 μJ, an accelerating gradient of 2 MeV m −1 and energy gain of 10 keV are achieved.</description><subject>639/624/399</subject><subject>639/766/400</subject><subject>Acceleration</subject><subject>Applied and Technical Physics</subject><subject>Dielectric waveguides</subject><subject>Electrons</subject><subject>Energy</subject><subject>Laser beams</subject><subject>Narrowband</subject><subject>Particle accelerators</subject><subject>Particle beams</subject><subject>Phase matching</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Radio frequency</subject><subject>Relativistic effects</subject><subject>Relativistic electron beams</subject><subject>Terahertz frequencies</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAYhIMouK7-AG8Bz9E3H23S47L4sbDgRc8hbd_ULt12TVpBf71ZKnryNHN4ZgaGkGsOtxykuYuKZ3nOQACDXCvGT8iCa1UwZQp5-utNdk4uYtwBZLIQYkE2q6rCDoMb26Gng6cBu-Q_2ji2FS3R7SOdYts3tHMRA2uwP8JY0zHpG4bxix6mLmK8JGfeJXP1o0vy-nD_sn5i2-fHzXq1ZZXk-cickrI2wihE7UuTKYDaeCXTlCzzvMy8rxRgWSMXBTqUUNbaIRjNUfqilktyM_cewvA-YRztbphCnyatUFoKKLQ2ieIzVYUhxoDeHkK7d-HTcrDHx-z8mE2P2eNjlqeMmDMxsX2D4a_5_9A39iJvwA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Hibberd, Morgan T.</creator><creator>Healy, Alisa L.</creator><creator>Lake, Daniel S.</creator><creator>Georgiadis, Vasileios</creator><creator>Smith, Elliott J. H.</creator><creator>Finlay, Oliver J.</creator><creator>Pacey, Thomas H.</creator><creator>Jones, James K.</creator><creator>Saveliev, Yuri</creator><creator>Walsh, David A.</creator><creator>Snedden, Edward W.</creator><creator>Appleby, Robert B.</creator><creator>Burt, Graeme</creator><creator>Graham, Darren M.</creator><creator>Jamison, Steven P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-8288-1216</orcidid><orcidid>https://orcid.org/0000-0002-5246-7476</orcidid><orcidid>https://orcid.org/0000-0002-0768-9299</orcidid><orcidid>https://orcid.org/0000-0003-3510-6721</orcidid><orcidid>https://orcid.org/0000-0001-9734-0543</orcidid><orcidid>https://orcid.org/0000-0002-3691-2541</orcidid><orcidid>https://orcid.org/0000-0002-4240-5888</orcidid><orcidid>https://orcid.org/0000-0001-6234-9943</orcidid><orcidid>https://orcid.org/0000-0001-8033-1923</orcidid><orcidid>https://orcid.org/0000-0001-6529-2620</orcidid><orcidid>https://orcid.org/0000-0001-7213-580X</orcidid></search><sort><creationdate>20201201</creationdate><title>Acceleration of relativistic beams using laser-generated terahertz pulses</title><author>Hibberd, Morgan T. ; Healy, Alisa L. ; Lake, Daniel S. ; Georgiadis, Vasileios ; Smith, Elliott J. H. ; Finlay, Oliver J. ; Pacey, Thomas H. ; Jones, James K. ; Saveliev, Yuri ; Walsh, David A. ; Snedden, Edward W. ; Appleby, Robert B. ; Burt, Graeme ; Graham, Darren M. ; Jamison, Steven P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a433d8284ee7fb85400d8f43bea3b66b5ffc40ebde129eae30bd7ae0871e3f9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/624/399</topic><topic>639/766/400</topic><topic>Acceleration</topic><topic>Applied and Technical Physics</topic><topic>Dielectric waveguides</topic><topic>Electrons</topic><topic>Energy</topic><topic>Laser beams</topic><topic>Narrowband</topic><topic>Particle accelerators</topic><topic>Particle beams</topic><topic>Phase matching</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Radio frequency</topic><topic>Relativistic effects</topic><topic>Relativistic electron beams</topic><topic>Terahertz frequencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hibberd, Morgan T.</creatorcontrib><creatorcontrib>Healy, Alisa L.</creatorcontrib><creatorcontrib>Lake, Daniel S.</creatorcontrib><creatorcontrib>Georgiadis, Vasileios</creatorcontrib><creatorcontrib>Smith, Elliott J. H.</creatorcontrib><creatorcontrib>Finlay, Oliver J.</creatorcontrib><creatorcontrib>Pacey, Thomas H.</creatorcontrib><creatorcontrib>Jones, James K.</creatorcontrib><creatorcontrib>Saveliev, Yuri</creatorcontrib><creatorcontrib>Walsh, David A.</creatorcontrib><creatorcontrib>Snedden, Edward W.</creatorcontrib><creatorcontrib>Appleby, Robert B.</creatorcontrib><creatorcontrib>Burt, Graeme</creatorcontrib><creatorcontrib>Graham, Darren M.</creatorcontrib><creatorcontrib>Jamison, Steven P.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hibberd, Morgan T.</au><au>Healy, Alisa L.</au><au>Lake, Daniel S.</au><au>Georgiadis, Vasileios</au><au>Smith, Elliott J. H.</au><au>Finlay, Oliver J.</au><au>Pacey, Thomas H.</au><au>Jones, James K.</au><au>Saveliev, Yuri</au><au>Walsh, David A.</au><au>Snedden, Edward W.</au><au>Appleby, Robert B.</au><au>Burt, Graeme</au><au>Graham, Darren M.</au><au>Jamison, Steven P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acceleration of relativistic beams using laser-generated terahertz pulses</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photonics</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>14</volume><issue>12</issue><spage>755</spage><epage>759</epage><pages>755-759</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Particle accelerators driven by laser-generated terahertz (THz) pulses promise unprecedented control over the energy–time phase space of particle bunches compared with conventional radiofrequency technology. Here we demonstrate acceleration of a relativistic electron beam in a THz-driven linear accelerator. Narrowband THz pulses were tuned to the phase-velocity-matched operating frequency of a rectangular dielectric-lined waveguide for extended collinear interaction with 35 MeV, 60 pC electron bunches, imparting multicycle energy modulation to chirped (6 ps) bunches and injection phase-dependent energy gain (up to 10 keV) to subcycle (2 ps) bunches. These proof-of-principle results establish a route to whole-bunch linear acceleration of subpicosecond particle beams, directly applicable to scaled-up and multistaged concepts capable of preserving beam quality, thus marking a key milestone for future THz-driven acceleration of relativistic beams. Relativistic 35 MeV electron bunches with charges of 60 pC are accelerated in a terahertz-wave-driven dielectric waveguide. When the terahertz pulse energy is 0.8 μJ, an accelerating gradient of 2 MeV m −1 and energy gain of 10 keV are achieved.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-020-0674-1</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8288-1216</orcidid><orcidid>https://orcid.org/0000-0002-5246-7476</orcidid><orcidid>https://orcid.org/0000-0002-0768-9299</orcidid><orcidid>https://orcid.org/0000-0003-3510-6721</orcidid><orcidid>https://orcid.org/0000-0001-9734-0543</orcidid><orcidid>https://orcid.org/0000-0002-3691-2541</orcidid><orcidid>https://orcid.org/0000-0002-4240-5888</orcidid><orcidid>https://orcid.org/0000-0001-6234-9943</orcidid><orcidid>https://orcid.org/0000-0001-8033-1923</orcidid><orcidid>https://orcid.org/0000-0001-6529-2620</orcidid><orcidid>https://orcid.org/0000-0001-7213-580X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2020-12, Vol.14 (12), p.755-759
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_journals_2473209778
source Springer Nature - Connect here FIRST to enable access
subjects 639/624/399
639/766/400
Acceleration
Applied and Technical Physics
Dielectric waveguides
Electrons
Energy
Laser beams
Narrowband
Particle accelerators
Particle beams
Phase matching
Physics
Physics and Astronomy
Quantum Physics
Radio frequency
Relativistic effects
Relativistic electron beams
Terahertz frequencies
title Acceleration of relativistic beams using laser-generated terahertz pulses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acceleration%20of%20relativistic%20beams%20using%20laser-generated%20terahertz%20pulses&rft.jtitle=Nature%20photonics&rft.au=Hibberd,%20Morgan%20T.&rft.date=2020-12-01&rft.volume=14&rft.issue=12&rft.spage=755&rft.epage=759&rft.pages=755-759&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-020-0674-1&rft_dat=%3Cproquest_cross%3E2473209778%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-a433d8284ee7fb85400d8f43bea3b66b5ffc40ebde129eae30bd7ae0871e3f9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473209778&rft_id=info:pmid/&rfr_iscdi=true