Loading…
Acceleration of relativistic beams using laser-generated terahertz pulses
Particle accelerators driven by laser-generated terahertz (THz) pulses promise unprecedented control over the energy–time phase space of particle bunches compared with conventional radiofrequency technology. Here we demonstrate acceleration of a relativistic electron beam in a THz-driven linear acce...
Saved in:
Published in: | Nature photonics 2020-12, Vol.14 (12), p.755-759 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-a433d8284ee7fb85400d8f43bea3b66b5ffc40ebde129eae30bd7ae0871e3f9d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-a433d8284ee7fb85400d8f43bea3b66b5ffc40ebde129eae30bd7ae0871e3f9d3 |
container_end_page | 759 |
container_issue | 12 |
container_start_page | 755 |
container_title | Nature photonics |
container_volume | 14 |
creator | Hibberd, Morgan T. Healy, Alisa L. Lake, Daniel S. Georgiadis, Vasileios Smith, Elliott J. H. Finlay, Oliver J. Pacey, Thomas H. Jones, James K. Saveliev, Yuri Walsh, David A. Snedden, Edward W. Appleby, Robert B. Burt, Graeme Graham, Darren M. Jamison, Steven P. |
description | Particle accelerators driven by laser-generated terahertz (THz) pulses promise unprecedented control over the energy–time phase space of particle bunches compared with conventional radiofrequency technology. Here we demonstrate acceleration of a relativistic electron beam in a THz-driven linear accelerator. Narrowband THz pulses were tuned to the phase-velocity-matched operating frequency of a rectangular dielectric-lined waveguide for extended collinear interaction with 35 MeV, 60 pC electron bunches, imparting multicycle energy modulation to chirped (6 ps) bunches and injection phase-dependent energy gain (up to 10 keV) to subcycle (2 ps) bunches. These proof-of-principle results establish a route to whole-bunch linear acceleration of subpicosecond particle beams, directly applicable to scaled-up and multistaged concepts capable of preserving beam quality, thus marking a key milestone for future THz-driven acceleration of relativistic beams.
Relativistic 35 MeV electron bunches with charges of 60 pC are accelerated in a terahertz-wave-driven dielectric waveguide. When the terahertz pulse energy is 0.8 μJ, an accelerating gradient of 2 MeV m
−1
and energy gain of 10 keV are achieved. |
doi_str_mv | 10.1038/s41566-020-0674-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473209778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473209778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a433d8284ee7fb85400d8f43bea3b66b5ffc40ebde129eae30bd7ae0871e3f9d3</originalsourceid><addsrcrecordid>eNp1kE1LxDAYhIMouK7-AG8Bz9E3H23S47L4sbDgRc8hbd_ULt12TVpBf71ZKnryNHN4ZgaGkGsOtxykuYuKZ3nOQACDXCvGT8iCa1UwZQp5-utNdk4uYtwBZLIQYkE2q6rCDoMb26Gng6cBu-Q_2ji2FS3R7SOdYts3tHMRA2uwP8JY0zHpG4bxix6mLmK8JGfeJXP1o0vy-nD_sn5i2-fHzXq1ZZXk-cickrI2wihE7UuTKYDaeCXTlCzzvMy8rxRgWSMXBTqUUNbaIRjNUfqilktyM_cewvA-YRztbphCnyatUFoKKLQ2ieIzVYUhxoDeHkK7d-HTcrDHx-z8mE2P2eNjlqeMmDMxsX2D4a_5_9A39iJvwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473209778</pqid></control><display><type>article</type><title>Acceleration of relativistic beams using laser-generated terahertz pulses</title><source>Springer Nature - Connect here FIRST to enable access</source><creator>Hibberd, Morgan T. ; Healy, Alisa L. ; Lake, Daniel S. ; Georgiadis, Vasileios ; Smith, Elliott J. H. ; Finlay, Oliver J. ; Pacey, Thomas H. ; Jones, James K. ; Saveliev, Yuri ; Walsh, David A. ; Snedden, Edward W. ; Appleby, Robert B. ; Burt, Graeme ; Graham, Darren M. ; Jamison, Steven P.</creator><creatorcontrib>Hibberd, Morgan T. ; Healy, Alisa L. ; Lake, Daniel S. ; Georgiadis, Vasileios ; Smith, Elliott J. H. ; Finlay, Oliver J. ; Pacey, Thomas H. ; Jones, James K. ; Saveliev, Yuri ; Walsh, David A. ; Snedden, Edward W. ; Appleby, Robert B. ; Burt, Graeme ; Graham, Darren M. ; Jamison, Steven P.</creatorcontrib><description>Particle accelerators driven by laser-generated terahertz (THz) pulses promise unprecedented control over the energy–time phase space of particle bunches compared with conventional radiofrequency technology. Here we demonstrate acceleration of a relativistic electron beam in a THz-driven linear accelerator. Narrowband THz pulses were tuned to the phase-velocity-matched operating frequency of a rectangular dielectric-lined waveguide for extended collinear interaction with 35 MeV, 60 pC electron bunches, imparting multicycle energy modulation to chirped (6 ps) bunches and injection phase-dependent energy gain (up to 10 keV) to subcycle (2 ps) bunches. These proof-of-principle results establish a route to whole-bunch linear acceleration of subpicosecond particle beams, directly applicable to scaled-up and multistaged concepts capable of preserving beam quality, thus marking a key milestone for future THz-driven acceleration of relativistic beams.
Relativistic 35 MeV electron bunches with charges of 60 pC are accelerated in a terahertz-wave-driven dielectric waveguide. When the terahertz pulse energy is 0.8 μJ, an accelerating gradient of 2 MeV m
−1
and energy gain of 10 keV are achieved.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-020-0674-1</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/399 ; 639/766/400 ; Acceleration ; Applied and Technical Physics ; Dielectric waveguides ; Electrons ; Energy ; Laser beams ; Narrowband ; Particle accelerators ; Particle beams ; Phase matching ; Physics ; Physics and Astronomy ; Quantum Physics ; Radio frequency ; Relativistic effects ; Relativistic electron beams ; Terahertz frequencies</subject><ispartof>Nature photonics, 2020-12, Vol.14 (12), p.755-759</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a433d8284ee7fb85400d8f43bea3b66b5ffc40ebde129eae30bd7ae0871e3f9d3</citedby><cites>FETCH-LOGICAL-c316t-a433d8284ee7fb85400d8f43bea3b66b5ffc40ebde129eae30bd7ae0871e3f9d3</cites><orcidid>0000-0001-8288-1216 ; 0000-0002-5246-7476 ; 0000-0002-0768-9299 ; 0000-0003-3510-6721 ; 0000-0001-9734-0543 ; 0000-0002-3691-2541 ; 0000-0002-4240-5888 ; 0000-0001-6234-9943 ; 0000-0001-8033-1923 ; 0000-0001-6529-2620 ; 0000-0001-7213-580X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hibberd, Morgan T.</creatorcontrib><creatorcontrib>Healy, Alisa L.</creatorcontrib><creatorcontrib>Lake, Daniel S.</creatorcontrib><creatorcontrib>Georgiadis, Vasileios</creatorcontrib><creatorcontrib>Smith, Elliott J. H.</creatorcontrib><creatorcontrib>Finlay, Oliver J.</creatorcontrib><creatorcontrib>Pacey, Thomas H.</creatorcontrib><creatorcontrib>Jones, James K.</creatorcontrib><creatorcontrib>Saveliev, Yuri</creatorcontrib><creatorcontrib>Walsh, David A.</creatorcontrib><creatorcontrib>Snedden, Edward W.</creatorcontrib><creatorcontrib>Appleby, Robert B.</creatorcontrib><creatorcontrib>Burt, Graeme</creatorcontrib><creatorcontrib>Graham, Darren M.</creatorcontrib><creatorcontrib>Jamison, Steven P.</creatorcontrib><title>Acceleration of relativistic beams using laser-generated terahertz pulses</title><title>Nature photonics</title><addtitle>Nat. Photonics</addtitle><description>Particle accelerators driven by laser-generated terahertz (THz) pulses promise unprecedented control over the energy–time phase space of particle bunches compared with conventional radiofrequency technology. Here we demonstrate acceleration of a relativistic electron beam in a THz-driven linear accelerator. Narrowband THz pulses were tuned to the phase-velocity-matched operating frequency of a rectangular dielectric-lined waveguide for extended collinear interaction with 35 MeV, 60 pC electron bunches, imparting multicycle energy modulation to chirped (6 ps) bunches and injection phase-dependent energy gain (up to 10 keV) to subcycle (2 ps) bunches. These proof-of-principle results establish a route to whole-bunch linear acceleration of subpicosecond particle beams, directly applicable to scaled-up and multistaged concepts capable of preserving beam quality, thus marking a key milestone for future THz-driven acceleration of relativistic beams.
Relativistic 35 MeV electron bunches with charges of 60 pC are accelerated in a terahertz-wave-driven dielectric waveguide. When the terahertz pulse energy is 0.8 μJ, an accelerating gradient of 2 MeV m
−1
and energy gain of 10 keV are achieved.</description><subject>639/624/399</subject><subject>639/766/400</subject><subject>Acceleration</subject><subject>Applied and Technical Physics</subject><subject>Dielectric waveguides</subject><subject>Electrons</subject><subject>Energy</subject><subject>Laser beams</subject><subject>Narrowband</subject><subject>Particle accelerators</subject><subject>Particle beams</subject><subject>Phase matching</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Radio frequency</subject><subject>Relativistic effects</subject><subject>Relativistic electron beams</subject><subject>Terahertz frequencies</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAYhIMouK7-AG8Bz9E3H23S47L4sbDgRc8hbd_ULt12TVpBf71ZKnryNHN4ZgaGkGsOtxykuYuKZ3nOQACDXCvGT8iCa1UwZQp5-utNdk4uYtwBZLIQYkE2q6rCDoMb26Gng6cBu-Q_2ji2FS3R7SOdYts3tHMRA2uwP8JY0zHpG4bxix6mLmK8JGfeJXP1o0vy-nD_sn5i2-fHzXq1ZZXk-cickrI2wihE7UuTKYDaeCXTlCzzvMy8rxRgWSMXBTqUUNbaIRjNUfqilktyM_cewvA-YRztbphCnyatUFoKKLQ2ieIzVYUhxoDeHkK7d-HTcrDHx-z8mE2P2eNjlqeMmDMxsX2D4a_5_9A39iJvwA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Hibberd, Morgan T.</creator><creator>Healy, Alisa L.</creator><creator>Lake, Daniel S.</creator><creator>Georgiadis, Vasileios</creator><creator>Smith, Elliott J. H.</creator><creator>Finlay, Oliver J.</creator><creator>Pacey, Thomas H.</creator><creator>Jones, James K.</creator><creator>Saveliev, Yuri</creator><creator>Walsh, David A.</creator><creator>Snedden, Edward W.</creator><creator>Appleby, Robert B.</creator><creator>Burt, Graeme</creator><creator>Graham, Darren M.</creator><creator>Jamison, Steven P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-8288-1216</orcidid><orcidid>https://orcid.org/0000-0002-5246-7476</orcidid><orcidid>https://orcid.org/0000-0002-0768-9299</orcidid><orcidid>https://orcid.org/0000-0003-3510-6721</orcidid><orcidid>https://orcid.org/0000-0001-9734-0543</orcidid><orcidid>https://orcid.org/0000-0002-3691-2541</orcidid><orcidid>https://orcid.org/0000-0002-4240-5888</orcidid><orcidid>https://orcid.org/0000-0001-6234-9943</orcidid><orcidid>https://orcid.org/0000-0001-8033-1923</orcidid><orcidid>https://orcid.org/0000-0001-6529-2620</orcidid><orcidid>https://orcid.org/0000-0001-7213-580X</orcidid></search><sort><creationdate>20201201</creationdate><title>Acceleration of relativistic beams using laser-generated terahertz pulses</title><author>Hibberd, Morgan T. ; Healy, Alisa L. ; Lake, Daniel S. ; Georgiadis, Vasileios ; Smith, Elliott J. H. ; Finlay, Oliver J. ; Pacey, Thomas H. ; Jones, James K. ; Saveliev, Yuri ; Walsh, David A. ; Snedden, Edward W. ; Appleby, Robert B. ; Burt, Graeme ; Graham, Darren M. ; Jamison, Steven P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a433d8284ee7fb85400d8f43bea3b66b5ffc40ebde129eae30bd7ae0871e3f9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/624/399</topic><topic>639/766/400</topic><topic>Acceleration</topic><topic>Applied and Technical Physics</topic><topic>Dielectric waveguides</topic><topic>Electrons</topic><topic>Energy</topic><topic>Laser beams</topic><topic>Narrowband</topic><topic>Particle accelerators</topic><topic>Particle beams</topic><topic>Phase matching</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Radio frequency</topic><topic>Relativistic effects</topic><topic>Relativistic electron beams</topic><topic>Terahertz frequencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hibberd, Morgan T.</creatorcontrib><creatorcontrib>Healy, Alisa L.</creatorcontrib><creatorcontrib>Lake, Daniel S.</creatorcontrib><creatorcontrib>Georgiadis, Vasileios</creatorcontrib><creatorcontrib>Smith, Elliott J. H.</creatorcontrib><creatorcontrib>Finlay, Oliver J.</creatorcontrib><creatorcontrib>Pacey, Thomas H.</creatorcontrib><creatorcontrib>Jones, James K.</creatorcontrib><creatorcontrib>Saveliev, Yuri</creatorcontrib><creatorcontrib>Walsh, David A.</creatorcontrib><creatorcontrib>Snedden, Edward W.</creatorcontrib><creatorcontrib>Appleby, Robert B.</creatorcontrib><creatorcontrib>Burt, Graeme</creatorcontrib><creatorcontrib>Graham, Darren M.</creatorcontrib><creatorcontrib>Jamison, Steven P.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hibberd, Morgan T.</au><au>Healy, Alisa L.</au><au>Lake, Daniel S.</au><au>Georgiadis, Vasileios</au><au>Smith, Elliott J. H.</au><au>Finlay, Oliver J.</au><au>Pacey, Thomas H.</au><au>Jones, James K.</au><au>Saveliev, Yuri</au><au>Walsh, David A.</au><au>Snedden, Edward W.</au><au>Appleby, Robert B.</au><au>Burt, Graeme</au><au>Graham, Darren M.</au><au>Jamison, Steven P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acceleration of relativistic beams using laser-generated terahertz pulses</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photonics</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>14</volume><issue>12</issue><spage>755</spage><epage>759</epage><pages>755-759</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Particle accelerators driven by laser-generated terahertz (THz) pulses promise unprecedented control over the energy–time phase space of particle bunches compared with conventional radiofrequency technology. Here we demonstrate acceleration of a relativistic electron beam in a THz-driven linear accelerator. Narrowband THz pulses were tuned to the phase-velocity-matched operating frequency of a rectangular dielectric-lined waveguide for extended collinear interaction with 35 MeV, 60 pC electron bunches, imparting multicycle energy modulation to chirped (6 ps) bunches and injection phase-dependent energy gain (up to 10 keV) to subcycle (2 ps) bunches. These proof-of-principle results establish a route to whole-bunch linear acceleration of subpicosecond particle beams, directly applicable to scaled-up and multistaged concepts capable of preserving beam quality, thus marking a key milestone for future THz-driven acceleration of relativistic beams.
Relativistic 35 MeV electron bunches with charges of 60 pC are accelerated in a terahertz-wave-driven dielectric waveguide. When the terahertz pulse energy is 0.8 μJ, an accelerating gradient of 2 MeV m
−1
and energy gain of 10 keV are achieved.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-020-0674-1</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8288-1216</orcidid><orcidid>https://orcid.org/0000-0002-5246-7476</orcidid><orcidid>https://orcid.org/0000-0002-0768-9299</orcidid><orcidid>https://orcid.org/0000-0003-3510-6721</orcidid><orcidid>https://orcid.org/0000-0001-9734-0543</orcidid><orcidid>https://orcid.org/0000-0002-3691-2541</orcidid><orcidid>https://orcid.org/0000-0002-4240-5888</orcidid><orcidid>https://orcid.org/0000-0001-6234-9943</orcidid><orcidid>https://orcid.org/0000-0001-8033-1923</orcidid><orcidid>https://orcid.org/0000-0001-6529-2620</orcidid><orcidid>https://orcid.org/0000-0001-7213-580X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2020-12, Vol.14 (12), p.755-759 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_proquest_journals_2473209778 |
source | Springer Nature - Connect here FIRST to enable access |
subjects | 639/624/399 639/766/400 Acceleration Applied and Technical Physics Dielectric waveguides Electrons Energy Laser beams Narrowband Particle accelerators Particle beams Phase matching Physics Physics and Astronomy Quantum Physics Radio frequency Relativistic effects Relativistic electron beams Terahertz frequencies |
title | Acceleration of relativistic beams using laser-generated terahertz pulses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acceleration%20of%20relativistic%20beams%20using%20laser-generated%20terahertz%20pulses&rft.jtitle=Nature%20photonics&rft.au=Hibberd,%20Morgan%20T.&rft.date=2020-12-01&rft.volume=14&rft.issue=12&rft.spage=755&rft.epage=759&rft.pages=755-759&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-020-0674-1&rft_dat=%3Cproquest_cross%3E2473209778%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-a433d8284ee7fb85400d8f43bea3b66b5ffc40ebde129eae30bd7ae0871e3f9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473209778&rft_id=info:pmid/&rfr_iscdi=true |