Loading…
Minimal gauge invariant couplings at order α′3: NS–NS fields
Removing the field redefinitions, the Bianchi identities and the total derivative freedoms from the general form of gauge invariant NS–NS couplings at order α ′ 3 , we have found that the minimum number of independent couplings is 872. We find that there are schemes in which there is no term with st...
Saved in:
Published in: | The European physical journal. C, Particles and fields Particles and fields, 2020-11, Vol.80 (11), Article 1086 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c313t-b062528ce24af5488f6bac3a4ab910440ead55591c9e881e8c48f474003a571a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c313t-b062528ce24af5488f6bac3a4ab910440ead55591c9e881e8c48f474003a571a3 |
container_end_page | |
container_issue | 11 |
container_start_page | |
container_title | The European physical journal. C, Particles and fields |
container_volume | 80 |
creator | Garousi, Mohammad R. |
description | Removing the field redefinitions, the Bianchi identities and the total derivative freedoms from the general form of gauge invariant NS–NS couplings at order
α
′
3
, we have found that the minimum number of independent couplings is 872. We find that there are schemes in which there is no term with structures
R
,
R
μ
ν
,
∇
μ
H
μ
α
β
,
∇
μ
∇
μ
Φ
. In these schemes, there are sub-schemes in which, except one term, the couplings can have no term with more than two derivatives. In the sub-scheme that we have chosen, the 872 couplings appear in 55 different structures. We fix some of the parameters in type II supersting theory by its corresponding four-point functions. The coupling which has term with more than two derivatives is constraint to be zero by the four-point functions. |
doi_str_mv | 10.1140/epjc/s10052-020-08662-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473319251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473319251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-b062528ce24af5488f6bac3a4ab910440ead55591c9e881e8c48f474003a571a3</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhS0EEqVwBiyxDh3_JQ67quJPKmVRWFuO60SpQhLsBIld78BJ4CAcoifBJQiWrGY0eu_NzIfQKYFzQjhMbLs2E08ABI2AQgQyjmmU7qER4YxHcZjv__acH6Ij79cAQDnIEZrelXX5pCtc6L6wuKxftCt13WHT9G1V1oXHusONW1mHP9-3mw92gRfL7eZtscR5aauVP0YHua68PfmpY_R4dfkwu4nm99e3s-k8MoywLsogpoJKYynXueBS5nGmDdNcZykJd4HVKyFESkxqpSRWGi5znnAApkVCNBujsyG3dc1zb32n1k3v6rBSUZ4wRlIqSFAlg8q4xntnc9W68J97VQTUjpfa8VIDLxV4qW9eKg1OOTh9cNSFdX_5_1m_APKpcjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473319251</pqid></control><display><type>article</type><title>Minimal gauge invariant couplings at order α′3: NS–NS fields</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Garousi, Mohammad R.</creator><creatorcontrib>Garousi, Mohammad R.</creatorcontrib><description>Removing the field redefinitions, the Bianchi identities and the total derivative freedoms from the general form of gauge invariant NS–NS couplings at order
α
′
3
, we have found that the minimum number of independent couplings is 872. We find that there are schemes in which there is no term with structures
R
,
R
μ
ν
,
∇
μ
H
μ
α
β
,
∇
μ
∇
μ
Φ
. In these schemes, there are sub-schemes in which, except one term, the couplings can have no term with more than two derivatives. In the sub-scheme that we have chosen, the 872 couplings appear in 55 different structures. We fix some of the parameters in type II supersting theory by its corresponding four-point functions. The coupling which has term with more than two derivatives is constraint to be zero by the four-point functions.</description><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-020-08662-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Astronomy ; Astrophysics and Cosmology ; Couplings ; Derivatives ; Elementary Particles ; Hadrons ; Heavy Ions ; Identities ; Invariants ; Measurement Science and Instrumentation ; Nuclear Energy ; Nuclear Physics ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Regular Article – Theoretical Physics ; String Theory</subject><ispartof>The European physical journal. C, Particles and fields, 2020-11, Vol.80 (11), Article 1086</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-b062528ce24af5488f6bac3a4ab910440ead55591c9e881e8c48f474003a571a3</citedby><cites>FETCH-LOGICAL-c313t-b062528ce24af5488f6bac3a4ab910440ead55591c9e881e8c48f474003a571a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2473319251/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2473319251?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Garousi, Mohammad R.</creatorcontrib><title>Minimal gauge invariant couplings at order α′3: NS–NS fields</title><title>The European physical journal. C, Particles and fields</title><addtitle>Eur. Phys. J. C</addtitle><description>Removing the field redefinitions, the Bianchi identities and the total derivative freedoms from the general form of gauge invariant NS–NS couplings at order
α
′
3
, we have found that the minimum number of independent couplings is 872. We find that there are schemes in which there is no term with structures
R
,
R
μ
ν
,
∇
μ
H
μ
α
β
,
∇
μ
∇
μ
Φ
. In these schemes, there are sub-schemes in which, except one term, the couplings can have no term with more than two derivatives. In the sub-scheme that we have chosen, the 872 couplings appear in 55 different structures. We fix some of the parameters in type II supersting theory by its corresponding four-point functions. The coupling which has term with more than two derivatives is constraint to be zero by the four-point functions.</description><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Couplings</subject><subject>Derivatives</subject><subject>Elementary Particles</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Identities</subject><subject>Invariants</subject><subject>Measurement Science and Instrumentation</subject><subject>Nuclear Energy</subject><subject>Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Regular Article – Theoretical Physics</subject><subject>String Theory</subject><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkE1OwzAQhS0EEqVwBiyxDh3_JQ67quJPKmVRWFuO60SpQhLsBIld78BJ4CAcoifBJQiWrGY0eu_NzIfQKYFzQjhMbLs2E08ABI2AQgQyjmmU7qER4YxHcZjv__acH6Ij79cAQDnIEZrelXX5pCtc6L6wuKxftCt13WHT9G1V1oXHusONW1mHP9-3mw92gRfL7eZtscR5aauVP0YHua68PfmpY_R4dfkwu4nm99e3s-k8MoywLsogpoJKYynXueBS5nGmDdNcZykJd4HVKyFESkxqpSRWGi5znnAApkVCNBujsyG3dc1zb32n1k3v6rBSUZ4wRlIqSFAlg8q4xntnc9W68J97VQTUjpfa8VIDLxV4qW9eKg1OOTh9cNSFdX_5_1m_APKpcjw</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Garousi, Mohammad R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20201101</creationdate><title>Minimal gauge invariant couplings at order α′3: NS–NS fields</title><author>Garousi, Mohammad R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-b062528ce24af5488f6bac3a4ab910440ead55591c9e881e8c48f474003a571a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Couplings</topic><topic>Derivatives</topic><topic>Elementary Particles</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Identities</topic><topic>Invariants</topic><topic>Measurement Science and Instrumentation</topic><topic>Nuclear Energy</topic><topic>Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Regular Article – Theoretical Physics</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garousi, Mohammad R.</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garousi, Mohammad R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimal gauge invariant couplings at order α′3: NS–NS fields</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><stitle>Eur. Phys. J. C</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>80</volume><issue>11</issue><artnum>1086</artnum><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>Removing the field redefinitions, the Bianchi identities and the total derivative freedoms from the general form of gauge invariant NS–NS couplings at order
α
′
3
, we have found that the minimum number of independent couplings is 872. We find that there are schemes in which there is no term with structures
R
,
R
μ
ν
,
∇
μ
H
μ
α
β
,
∇
μ
∇
μ
Φ
. In these schemes, there are sub-schemes in which, except one term, the couplings can have no term with more than two derivatives. In the sub-scheme that we have chosen, the 872 couplings appear in 55 different structures. We fix some of the parameters in type II supersting theory by its corresponding four-point functions. The coupling which has term with more than two derivatives is constraint to be zero by the four-point functions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjc/s10052-020-08662-9</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6044 |
ispartof | The European physical journal. C, Particles and fields, 2020-11, Vol.80 (11), Article 1086 |
issn | 1434-6044 1434-6052 |
language | eng |
recordid | cdi_proquest_journals_2473319251 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Astronomy Astrophysics and Cosmology Couplings Derivatives Elementary Particles Hadrons Heavy Ions Identities Invariants Measurement Science and Instrumentation Nuclear Energy Nuclear Physics Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Regular Article – Theoretical Physics String Theory |
title | Minimal gauge invariant couplings at order α′3: NS–NS fields |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimal%20gauge%20invariant%20couplings%20at%20order%20%CE%B1%E2%80%B23:%20NS%E2%80%93NS%20fields&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=Garousi,%20Mohammad%20R.&rft.date=2020-11-01&rft.volume=80&rft.issue=11&rft.artnum=1086&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-020-08662-9&rft_dat=%3Cproquest_cross%3E2473319251%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-b062528ce24af5488f6bac3a4ab910440ead55591c9e881e8c48f474003a571a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473319251&rft_id=info:pmid/&rfr_iscdi=true |