Loading…
NMR fragment screening reveals a novel small molecule binding site near the catalytic surface of the disulfide–dithiol oxidoreductase enzyme DsbA from Burkholderia pseudomallei
The presence of suitable cavities or pockets on protein structures is a general criterion for a therapeutic target protein to be classified as ‘druggable’. Many disease-related proteins that function solely through protein–protein interactions lack such pockets, making development of inhibitors by t...
Saved in:
Published in: | Journal of biomolecular NMR 2020-11, Vol.74 (10-11), p.595-611 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c352t-aedb7d2508229d9b3dab62e73c0229089a81fa9e413d0d7fc04bc41d6ea6e7ef3 |
---|---|
cites | cdi_FETCH-LOGICAL-c352t-aedb7d2508229d9b3dab62e73c0229089a81fa9e413d0d7fc04bc41d6ea6e7ef3 |
container_end_page | 611 |
container_issue | 10-11 |
container_start_page | 595 |
container_title | Journal of biomolecular NMR |
container_volume | 74 |
creator | Nebl, Stefan Alwan, Wesam S. Williams, Martin L. Sharma, Gaurav Taylor, Ashley Doak, Bradley C. Wilde, Karyn L. McMahon, Róisín M. Halili, Maria A. Martin, Jennifer L. Capuano, Ben Fenwick, R. Bryn Mohanty, Biswaranjan Scanlon, Martin J. |
description | The presence of suitable cavities or pockets on protein structures is a general criterion for a therapeutic target protein to be classified as ‘druggable’. Many disease-related proteins that function solely through protein–protein interactions lack such pockets, making development of inhibitors by traditional small-molecule structure-based design methods much more challenging. The 22 kDa bacterial thiol oxidoreductase enzyme, DsbA, from the gram-negative bacterium
Burkholderia pseudomallei
(BpsDsbA) is an example of one such target. The crystal structure of oxidized BpsDsbA lacks well-defined surface pockets. BpsDsbA is required for the correct folding of numerous virulence factors in
B. pseudomallei
, and genetic deletion of
dsbA
significantly attenuates
B. pseudomallei
virulence in murine infection models. Therefore, BpsDsbA is potentially an attractive drug target. Herein we report the identification of a small molecule binding site adjacent to the catalytic site of oxidized BpsDsbA.
1
H
N
CPMG relaxation dispersion NMR measurements suggest that the binding site is formed transiently through protein dynamics. Using fragment-based screening, we identified a small molecule that binds at this site with an estimated affinity of
K
D
~ 500 µM. This fragment inhibits BpsDsbA enzymatic activity in vitro. The binding mode of this molecule has been characterized by NMR data-driven docking using HADDOCK. These data provide a starting point towards the design of more potent small molecule inhibitors of BpsDsbA. |
doi_str_mv | 10.1007/s10858-020-00339-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473327757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473327757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-aedb7d2508229d9b3dab62e73c0229089a81fa9e413d0d7fc04bc41d6ea6e7ef3</originalsourceid><addsrcrecordid>eNp9kU2OEzEQhS0EEiFwAVYlsW4o2-m4ezkMv9IAEoK15bbLiQe3HezuEWHFHbgJR-IkdCZI7FiVVPVe1VN9jD3m-JQjqmeVY9d2DQpsEKXsm_YOW_FWyaZF5HfZCnvRNkLJ7j57UOs1Ivad2K7Yr_fvPoIvZjdSmqDaQpRC2kGhGzKxgoGUbyhCHU2MMOZIdo4EQ0juJKthIkhkCkx7AmsmE49TsFDn4o0lyP524EKdow-Ofv_46cK0DzlC_hZcLuRmO5lKQOn7cSR4UYeLJU8e4flcvuxzdFSCgUOl2eVTBgoP2T2_RKNHf-uafX718tPlm-bqw-u3lxdXjZWtmBpDblBOtNgJ0bt-kM4MW0FKWlwa2PWm4970tOHSoVPe4mawG-62ZLakyMs1e3Leeyj560x10td5Lmk5qcVGSSmUWh68ZuKssiXXWsjrQwmjKUfNUZ_Y6DMbvbDRt2x0u5jk2VQXcdpR-bf6P64_WyWX5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473327757</pqid></control><display><type>article</type><title>NMR fragment screening reveals a novel small molecule binding site near the catalytic surface of the disulfide–dithiol oxidoreductase enzyme DsbA from Burkholderia pseudomallei</title><source>Springer Nature</source><creator>Nebl, Stefan ; Alwan, Wesam S. ; Williams, Martin L. ; Sharma, Gaurav ; Taylor, Ashley ; Doak, Bradley C. ; Wilde, Karyn L. ; McMahon, Róisín M. ; Halili, Maria A. ; Martin, Jennifer L. ; Capuano, Ben ; Fenwick, R. Bryn ; Mohanty, Biswaranjan ; Scanlon, Martin J.</creator><creatorcontrib>Nebl, Stefan ; Alwan, Wesam S. ; Williams, Martin L. ; Sharma, Gaurav ; Taylor, Ashley ; Doak, Bradley C. ; Wilde, Karyn L. ; McMahon, Róisín M. ; Halili, Maria A. ; Martin, Jennifer L. ; Capuano, Ben ; Fenwick, R. Bryn ; Mohanty, Biswaranjan ; Scanlon, Martin J.</creatorcontrib><description>The presence of suitable cavities or pockets on protein structures is a general criterion for a therapeutic target protein to be classified as ‘druggable’. Many disease-related proteins that function solely through protein–protein interactions lack such pockets, making development of inhibitors by traditional small-molecule structure-based design methods much more challenging. The 22 kDa bacterial thiol oxidoreductase enzyme, DsbA, from the gram-negative bacterium
Burkholderia pseudomallei
(BpsDsbA) is an example of one such target. The crystal structure of oxidized BpsDsbA lacks well-defined surface pockets. BpsDsbA is required for the correct folding of numerous virulence factors in
B. pseudomallei
, and genetic deletion of
dsbA
significantly attenuates
B. pseudomallei
virulence in murine infection models. Therefore, BpsDsbA is potentially an attractive drug target. Herein we report the identification of a small molecule binding site adjacent to the catalytic site of oxidized BpsDsbA.
1
H
N
CPMG relaxation dispersion NMR measurements suggest that the binding site is formed transiently through protein dynamics. Using fragment-based screening, we identified a small molecule that binds at this site with an estimated affinity of
K
D
~ 500 µM. This fragment inhibits BpsDsbA enzymatic activity in vitro. The binding mode of this molecule has been characterized by NMR data-driven docking using HADDOCK. These data provide a starting point towards the design of more potent small molecule inhibitors of BpsDsbA.</description><identifier>ISSN: 0925-2738</identifier><identifier>EISSN: 1573-5001</identifier><identifier>DOI: 10.1007/s10858-020-00339-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Animal models ; Binding sites ; Biochemistry ; Biological and Medical Physics ; Biophysics ; Burkholderia pseudomallei ; Crystal structure ; Enzymatic activity ; Enzymes ; Inhibitors ; Molecular structure ; NMR ; Nuclear magnetic resonance ; Physics ; Physics and Astronomy ; Protein interaction ; Proteins ; Screening ; Spectroscopy/Spectrometry ; Therapeutic targets ; Thiol oxidoreductase ; Virulence ; Virulence factors</subject><ispartof>Journal of biomolecular NMR, 2020-11, Vol.74 (10-11), p.595-611</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-aedb7d2508229d9b3dab62e73c0229089a81fa9e413d0d7fc04bc41d6ea6e7ef3</citedby><cites>FETCH-LOGICAL-c352t-aedb7d2508229d9b3dab62e73c0229089a81fa9e413d0d7fc04bc41d6ea6e7ef3</cites><orcidid>0000-0002-9230-7506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Nebl, Stefan</creatorcontrib><creatorcontrib>Alwan, Wesam S.</creatorcontrib><creatorcontrib>Williams, Martin L.</creatorcontrib><creatorcontrib>Sharma, Gaurav</creatorcontrib><creatorcontrib>Taylor, Ashley</creatorcontrib><creatorcontrib>Doak, Bradley C.</creatorcontrib><creatorcontrib>Wilde, Karyn L.</creatorcontrib><creatorcontrib>McMahon, Róisín M.</creatorcontrib><creatorcontrib>Halili, Maria A.</creatorcontrib><creatorcontrib>Martin, Jennifer L.</creatorcontrib><creatorcontrib>Capuano, Ben</creatorcontrib><creatorcontrib>Fenwick, R. Bryn</creatorcontrib><creatorcontrib>Mohanty, Biswaranjan</creatorcontrib><creatorcontrib>Scanlon, Martin J.</creatorcontrib><title>NMR fragment screening reveals a novel small molecule binding site near the catalytic surface of the disulfide–dithiol oxidoreductase enzyme DsbA from Burkholderia pseudomallei</title><title>Journal of biomolecular NMR</title><addtitle>J Biomol NMR</addtitle><description>The presence of suitable cavities or pockets on protein structures is a general criterion for a therapeutic target protein to be classified as ‘druggable’. Many disease-related proteins that function solely through protein–protein interactions lack such pockets, making development of inhibitors by traditional small-molecule structure-based design methods much more challenging. The 22 kDa bacterial thiol oxidoreductase enzyme, DsbA, from the gram-negative bacterium
Burkholderia pseudomallei
(BpsDsbA) is an example of one such target. The crystal structure of oxidized BpsDsbA lacks well-defined surface pockets. BpsDsbA is required for the correct folding of numerous virulence factors in
B. pseudomallei
, and genetic deletion of
dsbA
significantly attenuates
B. pseudomallei
virulence in murine infection models. Therefore, BpsDsbA is potentially an attractive drug target. Herein we report the identification of a small molecule binding site adjacent to the catalytic site of oxidized BpsDsbA.
1
H
N
CPMG relaxation dispersion NMR measurements suggest that the binding site is formed transiently through protein dynamics. Using fragment-based screening, we identified a small molecule that binds at this site with an estimated affinity of
K
D
~ 500 µM. This fragment inhibits BpsDsbA enzymatic activity in vitro. The binding mode of this molecule has been characterized by NMR data-driven docking using HADDOCK. These data provide a starting point towards the design of more potent small molecule inhibitors of BpsDsbA.</description><subject>Animal models</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Burkholderia pseudomallei</subject><subject>Crystal structure</subject><subject>Enzymatic activity</subject><subject>Enzymes</subject><subject>Inhibitors</subject><subject>Molecular structure</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Screening</subject><subject>Spectroscopy/Spectrometry</subject><subject>Therapeutic targets</subject><subject>Thiol oxidoreductase</subject><subject>Virulence</subject><subject>Virulence factors</subject><issn>0925-2738</issn><issn>1573-5001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU2OEzEQhS0EEiFwAVYlsW4o2-m4ezkMv9IAEoK15bbLiQe3HezuEWHFHbgJR-IkdCZI7FiVVPVe1VN9jD3m-JQjqmeVY9d2DQpsEKXsm_YOW_FWyaZF5HfZCnvRNkLJ7j57UOs1Ivad2K7Yr_fvPoIvZjdSmqDaQpRC2kGhGzKxgoGUbyhCHU2MMOZIdo4EQ0juJKthIkhkCkx7AmsmE49TsFDn4o0lyP524EKdow-Ofv_46cK0DzlC_hZcLuRmO5lKQOn7cSR4UYeLJU8e4flcvuxzdFSCgUOl2eVTBgoP2T2_RKNHf-uafX718tPlm-bqw-u3lxdXjZWtmBpDblBOtNgJ0bt-kM4MW0FKWlwa2PWm4970tOHSoVPe4mawG-62ZLakyMs1e3Leeyj560x10td5Lmk5qcVGSSmUWh68ZuKssiXXWsjrQwmjKUfNUZ_Y6DMbvbDRt2x0u5jk2VQXcdpR-bf6P64_WyWX5w</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Nebl, Stefan</creator><creator>Alwan, Wesam S.</creator><creator>Williams, Martin L.</creator><creator>Sharma, Gaurav</creator><creator>Taylor, Ashley</creator><creator>Doak, Bradley C.</creator><creator>Wilde, Karyn L.</creator><creator>McMahon, Róisín M.</creator><creator>Halili, Maria A.</creator><creator>Martin, Jennifer L.</creator><creator>Capuano, Ben</creator><creator>Fenwick, R. Bryn</creator><creator>Mohanty, Biswaranjan</creator><creator>Scanlon, Martin J.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9230-7506</orcidid></search><sort><creationdate>20201101</creationdate><title>NMR fragment screening reveals a novel small molecule binding site near the catalytic surface of the disulfide–dithiol oxidoreductase enzyme DsbA from Burkholderia pseudomallei</title><author>Nebl, Stefan ; Alwan, Wesam S. ; Williams, Martin L. ; Sharma, Gaurav ; Taylor, Ashley ; Doak, Bradley C. ; Wilde, Karyn L. ; McMahon, Róisín M. ; Halili, Maria A. ; Martin, Jennifer L. ; Capuano, Ben ; Fenwick, R. Bryn ; Mohanty, Biswaranjan ; Scanlon, Martin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-aedb7d2508229d9b3dab62e73c0229089a81fa9e413d0d7fc04bc41d6ea6e7ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal models</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Burkholderia pseudomallei</topic><topic>Crystal structure</topic><topic>Enzymatic activity</topic><topic>Enzymes</topic><topic>Inhibitors</topic><topic>Molecular structure</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Screening</topic><topic>Spectroscopy/Spectrometry</topic><topic>Therapeutic targets</topic><topic>Thiol oxidoreductase</topic><topic>Virulence</topic><topic>Virulence factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nebl, Stefan</creatorcontrib><creatorcontrib>Alwan, Wesam S.</creatorcontrib><creatorcontrib>Williams, Martin L.</creatorcontrib><creatorcontrib>Sharma, Gaurav</creatorcontrib><creatorcontrib>Taylor, Ashley</creatorcontrib><creatorcontrib>Doak, Bradley C.</creatorcontrib><creatorcontrib>Wilde, Karyn L.</creatorcontrib><creatorcontrib>McMahon, Róisín M.</creatorcontrib><creatorcontrib>Halili, Maria A.</creatorcontrib><creatorcontrib>Martin, Jennifer L.</creatorcontrib><creatorcontrib>Capuano, Ben</creatorcontrib><creatorcontrib>Fenwick, R. Bryn</creatorcontrib><creatorcontrib>Mohanty, Biswaranjan</creatorcontrib><creatorcontrib>Scanlon, Martin J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of biomolecular NMR</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nebl, Stefan</au><au>Alwan, Wesam S.</au><au>Williams, Martin L.</au><au>Sharma, Gaurav</au><au>Taylor, Ashley</au><au>Doak, Bradley C.</au><au>Wilde, Karyn L.</au><au>McMahon, Róisín M.</au><au>Halili, Maria A.</au><au>Martin, Jennifer L.</au><au>Capuano, Ben</au><au>Fenwick, R. Bryn</au><au>Mohanty, Biswaranjan</au><au>Scanlon, Martin J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NMR fragment screening reveals a novel small molecule binding site near the catalytic surface of the disulfide–dithiol oxidoreductase enzyme DsbA from Burkholderia pseudomallei</atitle><jtitle>Journal of biomolecular NMR</jtitle><stitle>J Biomol NMR</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>74</volume><issue>10-11</issue><spage>595</spage><epage>611</epage><pages>595-611</pages><issn>0925-2738</issn><eissn>1573-5001</eissn><abstract>The presence of suitable cavities or pockets on protein structures is a general criterion for a therapeutic target protein to be classified as ‘druggable’. Many disease-related proteins that function solely through protein–protein interactions lack such pockets, making development of inhibitors by traditional small-molecule structure-based design methods much more challenging. The 22 kDa bacterial thiol oxidoreductase enzyme, DsbA, from the gram-negative bacterium
Burkholderia pseudomallei
(BpsDsbA) is an example of one such target. The crystal structure of oxidized BpsDsbA lacks well-defined surface pockets. BpsDsbA is required for the correct folding of numerous virulence factors in
B. pseudomallei
, and genetic deletion of
dsbA
significantly attenuates
B. pseudomallei
virulence in murine infection models. Therefore, BpsDsbA is potentially an attractive drug target. Herein we report the identification of a small molecule binding site adjacent to the catalytic site of oxidized BpsDsbA.
1
H
N
CPMG relaxation dispersion NMR measurements suggest that the binding site is formed transiently through protein dynamics. Using fragment-based screening, we identified a small molecule that binds at this site with an estimated affinity of
K
D
~ 500 µM. This fragment inhibits BpsDsbA enzymatic activity in vitro. The binding mode of this molecule has been characterized by NMR data-driven docking using HADDOCK. These data provide a starting point towards the design of more potent small molecule inhibitors of BpsDsbA.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10858-020-00339-5</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9230-7506</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-2738 |
ispartof | Journal of biomolecular NMR, 2020-11, Vol.74 (10-11), p.595-611 |
issn | 0925-2738 1573-5001 |
language | eng |
recordid | cdi_proquest_journals_2473327757 |
source | Springer Nature |
subjects | Animal models Binding sites Biochemistry Biological and Medical Physics Biophysics Burkholderia pseudomallei Crystal structure Enzymatic activity Enzymes Inhibitors Molecular structure NMR Nuclear magnetic resonance Physics Physics and Astronomy Protein interaction Proteins Screening Spectroscopy/Spectrometry Therapeutic targets Thiol oxidoreductase Virulence Virulence factors |
title | NMR fragment screening reveals a novel small molecule binding site near the catalytic surface of the disulfide–dithiol oxidoreductase enzyme DsbA from Burkholderia pseudomallei |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NMR%20fragment%20screening%20reveals%20a%20novel%20small%20molecule%20binding%20site%20near%20the%20catalytic%20surface%20of%20the%20disulfide%E2%80%93dithiol%20oxidoreductase%20enzyme%20DsbA%20from%20Burkholderia%20pseudomallei&rft.jtitle=Journal%20of%20biomolecular%20NMR&rft.au=Nebl,%20Stefan&rft.date=2020-11-01&rft.volume=74&rft.issue=10-11&rft.spage=595&rft.epage=611&rft.pages=595-611&rft.issn=0925-2738&rft.eissn=1573-5001&rft_id=info:doi/10.1007/s10858-020-00339-5&rft_dat=%3Cproquest_cross%3E2473327757%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-aedb7d2508229d9b3dab62e73c0229089a81fa9e413d0d7fc04bc41d6ea6e7ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473327757&rft_id=info:pmid/&rfr_iscdi=true |