Loading…
Optimal Sensors Placement in Dynamic Damage Detection of Beams Using a Statistical Approach
Structural monitoring plays a central role in civil engineering; in particular, optimal sensor positioning is essential for correct monitoring both in terms of usable data and for optimizing the cost of the setup sensors. In this context, we focus our attention on the identification of the dynamic r...
Saved in:
Published in: | Journal of optimization theory and applications 2020-12, Vol.187 (3), p.758-775 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Structural monitoring plays a central role in civil engineering; in particular, optimal sensor positioning is essential for correct monitoring both in terms of usable data and for optimizing the cost of the setup sensors. In this context, we focus our attention on the identification of the dynamic response of beam-like structures with uncertain damages. In particular, the non-localized damage is described using a Gaussian distributed random damage parameter. Furthermore, a procedure for selecting an optimal number of sensor placements has been presented based on the comparison among the probability of damage occurrence and the probability to detect the damage, where the former can be evaluated from the known distribution of the random parameter, whereas the latter is evaluated exploiting the closed-form asymptotic solution provided by a perturbation approach. The presented case study shows the capability and reliability of the proposed procedure for detecting the minimum number of sensors such that the monitoring accuracy (estimated by an error function measuring the differences among the two probabilities) is not greater than a control small value. |
---|---|
ISSN: | 0022-3239 1573-2878 |
DOI: | 10.1007/s10957-020-01761-3 |