Loading…

Life in suspension and its impact on phytoplankton morphology: an homage to Colin S. Reynolds

The amazing morphological diversity of phytoplankton has to be considered an evolutionarily driven compendium of strategies to cope with the strong variability and unpredictability of the pelagic environment. Phytoplankton collects unicellular and colonial photosynthetic organisms adapted to live in...

Full description

Saved in:
Bibliographic Details
Published in:Hydrobiologia 2021, Vol.848 (1), p.7-30
Main Authors: Naselli-Flores, Luigi, Zohary, Tamar, Padisák, Judit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-e373cab39dcfdf948292d189ada3451aa1c449152c5e78ea8974764ee7e5a01d3
cites cdi_FETCH-LOGICAL-c392t-e373cab39dcfdf948292d189ada3451aa1c449152c5e78ea8974764ee7e5a01d3
container_end_page 30
container_issue 1
container_start_page 7
container_title Hydrobiologia
container_volume 848
creator Naselli-Flores, Luigi
Zohary, Tamar
Padisák, Judit
description The amazing morphological diversity of phytoplankton has to be considered an evolutionarily driven compendium of strategies to cope with the strong variability and unpredictability of the pelagic environment. Phytoplankton collects unicellular and colonial photosynthetic organisms adapted to live in apparent suspension in turbulent water masses. Turbulence represents a key driver of phytoplankton dynamics in all aquatic ecosystems and phytoplankton morphological variability is the evolutionary response of this group of photosynthetic organisms to the temporal and spatial scales of variability of turbulence. This paper reviews the existing literature on the effects exerted by turbulence on phytoplankton populations and is aimed at showing how deeply turbulence contributes to the shape and size structure of phytoplankton assemblages. Our aim is to explore how turbulence governs phytoplankton access to resources and, at the same time, how the shape and size structure of phytoplankton represent the evolutionary way in which this group of organisms has optimised its survival in the highly dynamic aquatic environment. The paper is intended to serve as an homage to the (phytoplankton) ecologist Colin S. Reynolds. His life-long work highlighted how profoundly the ecology of phytoplankton depends on the physical constraints governing the movements of the water masses in which phytoplankton evolved and lives.
doi_str_mv 10.1007/s10750-020-04217-x
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2473387399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650507034</galeid><sourcerecordid>A650507034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-e373cab39dcfdf948292d189ada3451aa1c449152c5e78ea8974764ee7e5a01d3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVIoZs0f6AnQU89eKPPyOotLEkbWCgk7TEIVR57ldiSI2lh999XrQshlyKEmOF5ZgQvQh8pWVNC1GWmREnSEFavYFQ1hxO0olLxRlKqTtGKENo2LZXte3SW8xOpkmZkhR63vgfsA877PEPIPgZsQ4d9ydhPs3UF1868O5Y4jzY8l1pNMc27OMbh-KWyeBcnOwAuEW_iWCc9rPE9HEMcu_wBvevtmOHi33uOft7e_Nh8a7bfv95trreN45qVBrjizv7iunN912vRMs062mrbWS4ktZY6ITSVzElQLdhWK6GuBIACaQnt-Dn6tMydU3zZQy7mKe5TqCsNE4rzVnGtK7VeqMGOYHzoY0nW1dPB5F0M0Pvav76SRBJFuKjC5zdCZQocymD3OZu7h_u3LFtYl2LOCXozJz_ZdDSUmD8ZmSUjUzMyfzMyhyrxRcoVDgOk13__x_oNd_6TwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473387399</pqid></control><display><type>article</type><title>Life in suspension and its impact on phytoplankton morphology: an homage to Colin S. Reynolds</title><source>Springer Nature</source><creator>Naselli-Flores, Luigi ; Zohary, Tamar ; Padisák, Judit</creator><creatorcontrib>Naselli-Flores, Luigi ; Zohary, Tamar ; Padisák, Judit</creatorcontrib><description>The amazing morphological diversity of phytoplankton has to be considered an evolutionarily driven compendium of strategies to cope with the strong variability and unpredictability of the pelagic environment. Phytoplankton collects unicellular and colonial photosynthetic organisms adapted to live in apparent suspension in turbulent water masses. Turbulence represents a key driver of phytoplankton dynamics in all aquatic ecosystems and phytoplankton morphological variability is the evolutionary response of this group of photosynthetic organisms to the temporal and spatial scales of variability of turbulence. This paper reviews the existing literature on the effects exerted by turbulence on phytoplankton populations and is aimed at showing how deeply turbulence contributes to the shape and size structure of phytoplankton assemblages. Our aim is to explore how turbulence governs phytoplankton access to resources and, at the same time, how the shape and size structure of phytoplankton represent the evolutionary way in which this group of organisms has optimised its survival in the highly dynamic aquatic environment. The paper is intended to serve as an homage to the (phytoplankton) ecologist Colin S. Reynolds. His life-long work highlighted how profoundly the ecology of phytoplankton depends on the physical constraints governing the movements of the water masses in which phytoplankton evolved and lives.</description><identifier>ISSN: 0018-8158</identifier><identifier>EISSN: 1573-5117</identifier><identifier>DOI: 10.1007/s10750-020-04217-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animal morphology ; Aquatic ecosystems ; Aquatic environment ; Biomedical and Life Sciences ; Colin S. Reynolds' Legacy ; Ecology ; Evolution ; Freshwater &amp; Marine Ecology ; Genetic variability ; Life Sciences ; Morphology ; Organisms ; Pelagic environment ; Photosynthesis ; Phytoplankton ; Plankton ; Shape ; Survival ; Turbulence ; Variability ; Water masses ; Zoology</subject><ispartof>Hydrobiologia, 2021, Vol.848 (1), p.7-30</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-e373cab39dcfdf948292d189ada3451aa1c449152c5e78ea8974764ee7e5a01d3</citedby><cites>FETCH-LOGICAL-c392t-e373cab39dcfdf948292d189ada3451aa1c449152c5e78ea8974764ee7e5a01d3</cites><orcidid>0000-0003-3748-3862 ; 0000-0002-9615-6469 ; 0000-0001-8285-2896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Naselli-Flores, Luigi</creatorcontrib><creatorcontrib>Zohary, Tamar</creatorcontrib><creatorcontrib>Padisák, Judit</creatorcontrib><title>Life in suspension and its impact on phytoplankton morphology: an homage to Colin S. Reynolds</title><title>Hydrobiologia</title><addtitle>Hydrobiologia</addtitle><description>The amazing morphological diversity of phytoplankton has to be considered an evolutionarily driven compendium of strategies to cope with the strong variability and unpredictability of the pelagic environment. Phytoplankton collects unicellular and colonial photosynthetic organisms adapted to live in apparent suspension in turbulent water masses. Turbulence represents a key driver of phytoplankton dynamics in all aquatic ecosystems and phytoplankton morphological variability is the evolutionary response of this group of photosynthetic organisms to the temporal and spatial scales of variability of turbulence. This paper reviews the existing literature on the effects exerted by turbulence on phytoplankton populations and is aimed at showing how deeply turbulence contributes to the shape and size structure of phytoplankton assemblages. Our aim is to explore how turbulence governs phytoplankton access to resources and, at the same time, how the shape and size structure of phytoplankton represent the evolutionary way in which this group of organisms has optimised its survival in the highly dynamic aquatic environment. The paper is intended to serve as an homage to the (phytoplankton) ecologist Colin S. Reynolds. His life-long work highlighted how profoundly the ecology of phytoplankton depends on the physical constraints governing the movements of the water masses in which phytoplankton evolved and lives.</description><subject>Animal morphology</subject><subject>Aquatic ecosystems</subject><subject>Aquatic environment</subject><subject>Biomedical and Life Sciences</subject><subject>Colin S. Reynolds' Legacy</subject><subject>Ecology</subject><subject>Evolution</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Genetic variability</subject><subject>Life Sciences</subject><subject>Morphology</subject><subject>Organisms</subject><subject>Pelagic environment</subject><subject>Photosynthesis</subject><subject>Phytoplankton</subject><subject>Plankton</subject><subject>Shape</subject><subject>Survival</subject><subject>Turbulence</subject><subject>Variability</subject><subject>Water masses</subject><subject>Zoology</subject><issn>0018-8158</issn><issn>1573-5117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhkVIoZs0f6AnQU89eKPPyOotLEkbWCgk7TEIVR57ldiSI2lh999XrQshlyKEmOF5ZgQvQh8pWVNC1GWmREnSEFavYFQ1hxO0olLxRlKqTtGKENo2LZXte3SW8xOpkmZkhR63vgfsA877PEPIPgZsQ4d9ydhPs3UF1868O5Y4jzY8l1pNMc27OMbh-KWyeBcnOwAuEW_iWCc9rPE9HEMcu_wBvevtmOHi33uOft7e_Nh8a7bfv95trreN45qVBrjizv7iunN912vRMs062mrbWS4ktZY6ITSVzElQLdhWK6GuBIACaQnt-Dn6tMydU3zZQy7mKe5TqCsNE4rzVnGtK7VeqMGOYHzoY0nW1dPB5F0M0Pvav76SRBJFuKjC5zdCZQocymD3OZu7h_u3LFtYl2LOCXozJz_ZdDSUmD8ZmSUjUzMyfzMyhyrxRcoVDgOk13__x_oNd_6TwQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Naselli-Flores, Luigi</creator><creator>Zohary, Tamar</creator><creator>Padisák, Judit</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QH</scope><scope>7SN</scope><scope>7SS</scope><scope>7U7</scope><scope>7UA</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-3748-3862</orcidid><orcidid>https://orcid.org/0000-0002-9615-6469</orcidid><orcidid>https://orcid.org/0000-0001-8285-2896</orcidid></search><sort><creationdate>2021</creationdate><title>Life in suspension and its impact on phytoplankton morphology: an homage to Colin S. Reynolds</title><author>Naselli-Flores, Luigi ; Zohary, Tamar ; Padisák, Judit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-e373cab39dcfdf948292d189ada3451aa1c449152c5e78ea8974764ee7e5a01d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal morphology</topic><topic>Aquatic ecosystems</topic><topic>Aquatic environment</topic><topic>Biomedical and Life Sciences</topic><topic>Colin S. Reynolds' Legacy</topic><topic>Ecology</topic><topic>Evolution</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Genetic variability</topic><topic>Life Sciences</topic><topic>Morphology</topic><topic>Organisms</topic><topic>Pelagic environment</topic><topic>Photosynthesis</topic><topic>Phytoplankton</topic><topic>Plankton</topic><topic>Shape</topic><topic>Survival</topic><topic>Turbulence</topic><topic>Variability</topic><topic>Water masses</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naselli-Flores, Luigi</creatorcontrib><creatorcontrib>Zohary, Tamar</creatorcontrib><creatorcontrib>Padisák, Judit</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><jtitle>Hydrobiologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naselli-Flores, Luigi</au><au>Zohary, Tamar</au><au>Padisák, Judit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Life in suspension and its impact on phytoplankton morphology: an homage to Colin S. Reynolds</atitle><jtitle>Hydrobiologia</jtitle><stitle>Hydrobiologia</stitle><date>2021</date><risdate>2021</risdate><volume>848</volume><issue>1</issue><spage>7</spage><epage>30</epage><pages>7-30</pages><issn>0018-8158</issn><eissn>1573-5117</eissn><abstract>The amazing morphological diversity of phytoplankton has to be considered an evolutionarily driven compendium of strategies to cope with the strong variability and unpredictability of the pelagic environment. Phytoplankton collects unicellular and colonial photosynthetic organisms adapted to live in apparent suspension in turbulent water masses. Turbulence represents a key driver of phytoplankton dynamics in all aquatic ecosystems and phytoplankton morphological variability is the evolutionary response of this group of photosynthetic organisms to the temporal and spatial scales of variability of turbulence. This paper reviews the existing literature on the effects exerted by turbulence on phytoplankton populations and is aimed at showing how deeply turbulence contributes to the shape and size structure of phytoplankton assemblages. Our aim is to explore how turbulence governs phytoplankton access to resources and, at the same time, how the shape and size structure of phytoplankton represent the evolutionary way in which this group of organisms has optimised its survival in the highly dynamic aquatic environment. The paper is intended to serve as an homage to the (phytoplankton) ecologist Colin S. Reynolds. His life-long work highlighted how profoundly the ecology of phytoplankton depends on the physical constraints governing the movements of the water masses in which phytoplankton evolved and lives.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10750-020-04217-x</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-3748-3862</orcidid><orcidid>https://orcid.org/0000-0002-9615-6469</orcidid><orcidid>https://orcid.org/0000-0001-8285-2896</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-8158
ispartof Hydrobiologia, 2021, Vol.848 (1), p.7-30
issn 0018-8158
1573-5117
language eng
recordid cdi_proquest_journals_2473387399
source Springer Nature
subjects Animal morphology
Aquatic ecosystems
Aquatic environment
Biomedical and Life Sciences
Colin S. Reynolds' Legacy
Ecology
Evolution
Freshwater & Marine Ecology
Genetic variability
Life Sciences
Morphology
Organisms
Pelagic environment
Photosynthesis
Phytoplankton
Plankton
Shape
Survival
Turbulence
Variability
Water masses
Zoology
title Life in suspension and its impact on phytoplankton morphology: an homage to Colin S. Reynolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A36%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Life%20in%20suspension%20and%20its%20impact%20on%20phytoplankton%20morphology:%20an%20homage%20to%20Colin%20S.%20Reynolds&rft.jtitle=Hydrobiologia&rft.au=Naselli-Flores,%20Luigi&rft.date=2021&rft.volume=848&rft.issue=1&rft.spage=7&rft.epage=30&rft.pages=7-30&rft.issn=0018-8158&rft.eissn=1573-5117&rft_id=info:doi/10.1007/s10750-020-04217-x&rft_dat=%3Cgale_proqu%3EA650507034%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-e373cab39dcfdf948292d189ada3451aa1c449152c5e78ea8974764ee7e5a01d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473387399&rft_id=info:pmid/&rft_galeid=A650507034&rfr_iscdi=true