Loading…
Life in suspension and its impact on phytoplankton morphology: an homage to Colin S. Reynolds
The amazing morphological diversity of phytoplankton has to be considered an evolutionarily driven compendium of strategies to cope with the strong variability and unpredictability of the pelagic environment. Phytoplankton collects unicellular and colonial photosynthetic organisms adapted to live in...
Saved in:
Published in: | Hydrobiologia 2021, Vol.848 (1), p.7-30 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-e373cab39dcfdf948292d189ada3451aa1c449152c5e78ea8974764ee7e5a01d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-e373cab39dcfdf948292d189ada3451aa1c449152c5e78ea8974764ee7e5a01d3 |
container_end_page | 30 |
container_issue | 1 |
container_start_page | 7 |
container_title | Hydrobiologia |
container_volume | 848 |
creator | Naselli-Flores, Luigi Zohary, Tamar Padisák, Judit |
description | The amazing morphological diversity of phytoplankton has to be considered an evolutionarily driven compendium of strategies to cope with the strong variability and unpredictability of the pelagic environment. Phytoplankton collects unicellular and colonial photosynthetic organisms adapted to live in apparent suspension in turbulent water masses. Turbulence represents a key driver of phytoplankton dynamics in all aquatic ecosystems and phytoplankton morphological variability is the evolutionary response of this group of photosynthetic organisms to the temporal and spatial scales of variability of turbulence. This paper reviews the existing literature on the effects exerted by turbulence on phytoplankton populations and is aimed at showing how deeply turbulence contributes to the shape and size structure of phytoplankton assemblages. Our aim is to explore how turbulence governs phytoplankton access to resources and, at the same time, how the shape and size structure of phytoplankton represent the evolutionary way in which this group of organisms has optimised its survival in the highly dynamic aquatic environment. The paper is intended to serve as an homage to the (phytoplankton) ecologist Colin S. Reynolds. His life-long work highlighted how profoundly the ecology of phytoplankton depends on the physical constraints governing the movements of the water masses in which phytoplankton evolved and lives. |
doi_str_mv | 10.1007/s10750-020-04217-x |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2473387399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650507034</galeid><sourcerecordid>A650507034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-e373cab39dcfdf948292d189ada3451aa1c449152c5e78ea8974764ee7e5a01d3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVIoZs0f6AnQU89eKPPyOotLEkbWCgk7TEIVR57ldiSI2lh999XrQshlyKEmOF5ZgQvQh8pWVNC1GWmREnSEFavYFQ1hxO0olLxRlKqTtGKENo2LZXte3SW8xOpkmZkhR63vgfsA877PEPIPgZsQ4d9ydhPs3UF1868O5Y4jzY8l1pNMc27OMbh-KWyeBcnOwAuEW_iWCc9rPE9HEMcu_wBvevtmOHi33uOft7e_Nh8a7bfv95trreN45qVBrjizv7iunN912vRMs062mrbWS4ktZY6ITSVzElQLdhWK6GuBIACaQnt-Dn6tMydU3zZQy7mKe5TqCsNE4rzVnGtK7VeqMGOYHzoY0nW1dPB5F0M0Pvav76SRBJFuKjC5zdCZQocymD3OZu7h_u3LFtYl2LOCXozJz_ZdDSUmD8ZmSUjUzMyfzMyhyrxRcoVDgOk13__x_oNd_6TwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473387399</pqid></control><display><type>article</type><title>Life in suspension and its impact on phytoplankton morphology: an homage to Colin S. Reynolds</title><source>Springer Nature</source><creator>Naselli-Flores, Luigi ; Zohary, Tamar ; Padisák, Judit</creator><creatorcontrib>Naselli-Flores, Luigi ; Zohary, Tamar ; Padisák, Judit</creatorcontrib><description>The amazing morphological diversity of phytoplankton has to be considered an evolutionarily driven compendium of strategies to cope with the strong variability and unpredictability of the pelagic environment. Phytoplankton collects unicellular and colonial photosynthetic organisms adapted to live in apparent suspension in turbulent water masses. Turbulence represents a key driver of phytoplankton dynamics in all aquatic ecosystems and phytoplankton morphological variability is the evolutionary response of this group of photosynthetic organisms to the temporal and spatial scales of variability of turbulence. This paper reviews the existing literature on the effects exerted by turbulence on phytoplankton populations and is aimed at showing how deeply turbulence contributes to the shape and size structure of phytoplankton assemblages. Our aim is to explore how turbulence governs phytoplankton access to resources and, at the same time, how the shape and size structure of phytoplankton represent the evolutionary way in which this group of organisms has optimised its survival in the highly dynamic aquatic environment. The paper is intended to serve as an homage to the (phytoplankton) ecologist Colin S. Reynolds. His life-long work highlighted how profoundly the ecology of phytoplankton depends on the physical constraints governing the movements of the water masses in which phytoplankton evolved and lives.</description><identifier>ISSN: 0018-8158</identifier><identifier>EISSN: 1573-5117</identifier><identifier>DOI: 10.1007/s10750-020-04217-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animal morphology ; Aquatic ecosystems ; Aquatic environment ; Biomedical and Life Sciences ; Colin S. Reynolds' Legacy ; Ecology ; Evolution ; Freshwater & Marine Ecology ; Genetic variability ; Life Sciences ; Morphology ; Organisms ; Pelagic environment ; Photosynthesis ; Phytoplankton ; Plankton ; Shape ; Survival ; Turbulence ; Variability ; Water masses ; Zoology</subject><ispartof>Hydrobiologia, 2021, Vol.848 (1), p.7-30</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-e373cab39dcfdf948292d189ada3451aa1c449152c5e78ea8974764ee7e5a01d3</citedby><cites>FETCH-LOGICAL-c392t-e373cab39dcfdf948292d189ada3451aa1c449152c5e78ea8974764ee7e5a01d3</cites><orcidid>0000-0003-3748-3862 ; 0000-0002-9615-6469 ; 0000-0001-8285-2896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Naselli-Flores, Luigi</creatorcontrib><creatorcontrib>Zohary, Tamar</creatorcontrib><creatorcontrib>Padisák, Judit</creatorcontrib><title>Life in suspension and its impact on phytoplankton morphology: an homage to Colin S. Reynolds</title><title>Hydrobiologia</title><addtitle>Hydrobiologia</addtitle><description>The amazing morphological diversity of phytoplankton has to be considered an evolutionarily driven compendium of strategies to cope with the strong variability and unpredictability of the pelagic environment. Phytoplankton collects unicellular and colonial photosynthetic organisms adapted to live in apparent suspension in turbulent water masses. Turbulence represents a key driver of phytoplankton dynamics in all aquatic ecosystems and phytoplankton morphological variability is the evolutionary response of this group of photosynthetic organisms to the temporal and spatial scales of variability of turbulence. This paper reviews the existing literature on the effects exerted by turbulence on phytoplankton populations and is aimed at showing how deeply turbulence contributes to the shape and size structure of phytoplankton assemblages. Our aim is to explore how turbulence governs phytoplankton access to resources and, at the same time, how the shape and size structure of phytoplankton represent the evolutionary way in which this group of organisms has optimised its survival in the highly dynamic aquatic environment. The paper is intended to serve as an homage to the (phytoplankton) ecologist Colin S. Reynolds. His life-long work highlighted how profoundly the ecology of phytoplankton depends on the physical constraints governing the movements of the water masses in which phytoplankton evolved and lives.</description><subject>Animal morphology</subject><subject>Aquatic ecosystems</subject><subject>Aquatic environment</subject><subject>Biomedical and Life Sciences</subject><subject>Colin S. Reynolds' Legacy</subject><subject>Ecology</subject><subject>Evolution</subject><subject>Freshwater & Marine Ecology</subject><subject>Genetic variability</subject><subject>Life Sciences</subject><subject>Morphology</subject><subject>Organisms</subject><subject>Pelagic environment</subject><subject>Photosynthesis</subject><subject>Phytoplankton</subject><subject>Plankton</subject><subject>Shape</subject><subject>Survival</subject><subject>Turbulence</subject><subject>Variability</subject><subject>Water masses</subject><subject>Zoology</subject><issn>0018-8158</issn><issn>1573-5117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhkVIoZs0f6AnQU89eKPPyOotLEkbWCgk7TEIVR57ldiSI2lh999XrQshlyKEmOF5ZgQvQh8pWVNC1GWmREnSEFavYFQ1hxO0olLxRlKqTtGKENo2LZXte3SW8xOpkmZkhR63vgfsA877PEPIPgZsQ4d9ydhPs3UF1868O5Y4jzY8l1pNMc27OMbh-KWyeBcnOwAuEW_iWCc9rPE9HEMcu_wBvevtmOHi33uOft7e_Nh8a7bfv95trreN45qVBrjizv7iunN912vRMs062mrbWS4ktZY6ITSVzElQLdhWK6GuBIACaQnt-Dn6tMydU3zZQy7mKe5TqCsNE4rzVnGtK7VeqMGOYHzoY0nW1dPB5F0M0Pvav76SRBJFuKjC5zdCZQocymD3OZu7h_u3LFtYl2LOCXozJz_ZdDSUmD8ZmSUjUzMyfzMyhyrxRcoVDgOk13__x_oNd_6TwQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Naselli-Flores, Luigi</creator><creator>Zohary, Tamar</creator><creator>Padisák, Judit</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QH</scope><scope>7SN</scope><scope>7SS</scope><scope>7U7</scope><scope>7UA</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-3748-3862</orcidid><orcidid>https://orcid.org/0000-0002-9615-6469</orcidid><orcidid>https://orcid.org/0000-0001-8285-2896</orcidid></search><sort><creationdate>2021</creationdate><title>Life in suspension and its impact on phytoplankton morphology: an homage to Colin S. Reynolds</title><author>Naselli-Flores, Luigi ; Zohary, Tamar ; Padisák, Judit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-e373cab39dcfdf948292d189ada3451aa1c449152c5e78ea8974764ee7e5a01d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal morphology</topic><topic>Aquatic ecosystems</topic><topic>Aquatic environment</topic><topic>Biomedical and Life Sciences</topic><topic>Colin S. Reynolds' Legacy</topic><topic>Ecology</topic><topic>Evolution</topic><topic>Freshwater & Marine Ecology</topic><topic>Genetic variability</topic><topic>Life Sciences</topic><topic>Morphology</topic><topic>Organisms</topic><topic>Pelagic environment</topic><topic>Photosynthesis</topic><topic>Phytoplankton</topic><topic>Plankton</topic><topic>Shape</topic><topic>Survival</topic><topic>Turbulence</topic><topic>Variability</topic><topic>Water masses</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naselli-Flores, Luigi</creatorcontrib><creatorcontrib>Zohary, Tamar</creatorcontrib><creatorcontrib>Padisák, Judit</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><jtitle>Hydrobiologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naselli-Flores, Luigi</au><au>Zohary, Tamar</au><au>Padisák, Judit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Life in suspension and its impact on phytoplankton morphology: an homage to Colin S. Reynolds</atitle><jtitle>Hydrobiologia</jtitle><stitle>Hydrobiologia</stitle><date>2021</date><risdate>2021</risdate><volume>848</volume><issue>1</issue><spage>7</spage><epage>30</epage><pages>7-30</pages><issn>0018-8158</issn><eissn>1573-5117</eissn><abstract>The amazing morphological diversity of phytoplankton has to be considered an evolutionarily driven compendium of strategies to cope with the strong variability and unpredictability of the pelagic environment. Phytoplankton collects unicellular and colonial photosynthetic organisms adapted to live in apparent suspension in turbulent water masses. Turbulence represents a key driver of phytoplankton dynamics in all aquatic ecosystems and phytoplankton morphological variability is the evolutionary response of this group of photosynthetic organisms to the temporal and spatial scales of variability of turbulence. This paper reviews the existing literature on the effects exerted by turbulence on phytoplankton populations and is aimed at showing how deeply turbulence contributes to the shape and size structure of phytoplankton assemblages. Our aim is to explore how turbulence governs phytoplankton access to resources and, at the same time, how the shape and size structure of phytoplankton represent the evolutionary way in which this group of organisms has optimised its survival in the highly dynamic aquatic environment. The paper is intended to serve as an homage to the (phytoplankton) ecologist Colin S. Reynolds. His life-long work highlighted how profoundly the ecology of phytoplankton depends on the physical constraints governing the movements of the water masses in which phytoplankton evolved and lives.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10750-020-04217-x</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-3748-3862</orcidid><orcidid>https://orcid.org/0000-0002-9615-6469</orcidid><orcidid>https://orcid.org/0000-0001-8285-2896</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-8158 |
ispartof | Hydrobiologia, 2021, Vol.848 (1), p.7-30 |
issn | 0018-8158 1573-5117 |
language | eng |
recordid | cdi_proquest_journals_2473387399 |
source | Springer Nature |
subjects | Animal morphology Aquatic ecosystems Aquatic environment Biomedical and Life Sciences Colin S. Reynolds' Legacy Ecology Evolution Freshwater & Marine Ecology Genetic variability Life Sciences Morphology Organisms Pelagic environment Photosynthesis Phytoplankton Plankton Shape Survival Turbulence Variability Water masses Zoology |
title | Life in suspension and its impact on phytoplankton morphology: an homage to Colin S. Reynolds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A36%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Life%20in%20suspension%20and%20its%20impact%20on%20phytoplankton%20morphology:%20an%20homage%20to%20Colin%20S.%20Reynolds&rft.jtitle=Hydrobiologia&rft.au=Naselli-Flores,%20Luigi&rft.date=2021&rft.volume=848&rft.issue=1&rft.spage=7&rft.epage=30&rft.pages=7-30&rft.issn=0018-8158&rft.eissn=1573-5117&rft_id=info:doi/10.1007/s10750-020-04217-x&rft_dat=%3Cgale_proqu%3EA650507034%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-e373cab39dcfdf948292d189ada3451aa1c449152c5e78ea8974764ee7e5a01d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473387399&rft_id=info:pmid/&rft_galeid=A650507034&rfr_iscdi=true |