Loading…
Investigation of Electrical Conductivity of Gold Nanoparticles Scattered in Polyvinylidene Fluoride/Polyvinyl Chloride via Laser Ablation for Electrical Applications
The electrical characterization of polyvinylidene fluoride (PVDF)/polyvinyl chloride (PVC) composites after scattering by gold nanoparticles (AuNPs) has been studied by a one-way laser ablation process. AuNPs@PVDF/PVC nanocomposites were synthesized in films formed via traditional casting technique....
Saved in:
Published in: | Journal of electronic materials 2020-12, Vol.49 (12), p.7603-7608 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The electrical characterization of polyvinylidene fluoride (PVDF)/polyvinyl chloride (PVC) composites after scattering by gold nanoparticles (AuNPs) has been studied by a one-way laser ablation process. AuNPs@PVDF/PVC nanocomposites were synthesized in films formed via traditional casting technique. The electrical conductivity of AuNPs@PVDF/PVC films was also studied. FT-IR indicated that adding AuNPs to PVDF/PVC confirmed the interaction and complexation between a PVDF/PVC composite and AuNPs. UV–Vis results confirmed the presence of surface plasmon resonance of AuNPs at 519 nm. The indirect optical bandgap was decreased by increasing the scattered AuNPs in the PVDF/PVC from 2.26 eV for pure PVDF/PVC to 1.61 eV for AuNPs@PVDF/PVC at 20 min ablation time. The addition of AuNPs to a PVDF/PVC composite enhances the conductivity due to the increase in the number of ions resulting from increasing ablation time. |
---|---|
ISSN: | 0361-5235 1543-186X |
DOI: | 10.1007/s11664-020-08459-2 |