Loading…

Ecological engineering across organismal scales: trophic-mediated positive effects of microhabitat enhancement on fishes

Retrofitting microhabitat features is a common ecological engineering technique for enhancing biodiversity and abundance of small, epilithic organisms on artificial shorelines by providing refuge spaces and/or ameliorating abiotic conditions. These features are typically too small to be utilised as...

Full description

Saved in:
Bibliographic Details
Published in:Marine ecology. Progress series (Halstenbek) 2020-12, Vol.656, p.181-192
Main Authors: Taira, Daisuke, Heery, Eliza C., Loke, Lynette H. L., Teo, Aaron, Bauman, Andrew G., Todd, Peter A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Retrofitting microhabitat features is a common ecological engineering technique for enhancing biodiversity and abundance of small, epilithic organisms on artificial shorelines by providing refuge spaces and/or ameliorating abiotic conditions. These features are typically too small to be utilised as refugia by larger, highly motile consumers such as fish, but they may affect these organisms through other mechanisms. This study sought to determine whether microhabitat en - hancement units alter the fish abundance, richness and assemblage composition on tropical seawalls and explores possible underlying trophic mechanisms. We created 12 experimental plots consisting of 6 enhanced plots, each with 20 microhabitat enhancement tiles, and 6 control plots without tiles on intertidal seawalls at Pulau Hantu, an offshore island south of mainland Singapore. Benthic cover and fish assemblage were surveyed within each plot using photoquadrats and underwater video cameras, respectively, from April 2018 to February 2019. We found greater abundance and species richness and distinct assemblages of fish in the enhanced plots compared to the control plots. These differences were driven largely by an increase in both abundance and richness of fish species with epibenthic-feeding strategies and were significantly associated with higher biotic cover in the enhanced plots, especially epilithic algal matrix (EAM). Our results indicate that, in addition to facilitating epilithic organisms, microhabitat enhancement can provide food resources for epibenthic-feeding fishes, increase fish biodiversity, and alter fish assemblages in tropical urbanised shorelines.
ISSN:0171-8630
1616-1599
DOI:10.3354/meps13462