Loading…
Design, Fabrication and Non-destructive Microwave Measurement of a Quad Resonance, Mono-band Metamaterial Polarization Converter Realized by a Fractal Inspired Split-Ring Resonator
The development and measurement of a single layer, wideband, and angularly stable microwave polarization converter (PC), specifically at a low-frequency regime, is still a very challenging task. In this article, a quad resonance, mono-band metamaterial polarization converter is fabricated and measur...
Saved in:
Published in: | Journal of electronic materials 2021-02, Vol.50 (2), p.511-520 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-ced58633aac39258c30c2c8428ad2a370b4c4063970af930b95d27f3e88f71b93 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-ced58633aac39258c30c2c8428ad2a370b4c4063970af930b95d27f3e88f71b93 |
container_end_page | 520 |
container_issue | 2 |
container_start_page | 511 |
container_title | Journal of electronic materials |
container_volume | 50 |
creator | Sahu, Arpit Chaudhary, Varun Yadav, Ravi Panwar, Ravi |
description | The development and measurement of a single layer, wideband, and angularly stable microwave polarization converter (PC), specifically at a low-frequency regime, is still a very challenging task. In this article, a quad resonance, mono-band metamaterial polarization converter is fabricated and measured using a non-destructive free-space microwave measurement setup. A comprehensive study of a single-layer metamaterial (MTM) structure using a miniaturized fractal element array reveals that four resonances can be achieved within its operating frequency band to realize a wide operating band. The proposed MTM-PC is inspired by the split-ring resonator (SRR) based fractal geometry to control the linearly polarized electromagnetic (EM) wave in the C-band. The result shows the average polarization conversion ratio over 87% in a single broad frequency band (i.e., 5.5 GHz to 8.0 GHz). A careful study reveals that wideband response at lower frequency is achieved by introducing four resonances due to fractal inspired SRR geometry. Moreover, the proposed structure is the oblique angle insensitive up to 45°. The results reflect the enormous potential of the proposed approach for various practical EM applications. |
doi_str_mv | 10.1007/s11664-020-08571-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473502852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473502852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ced58633aac39258c30c2c8428ad2a370b4c4063970af930b95d27f3e88f71b93</originalsourceid><addsrcrecordid>eNp9Uctq3DAUFaGFTKf9ga4E3UaJHpYtL8u0kwQyaZu20J24luVBwSNNJTkh-a58YDRxoLuu7uXe84BzEPrI6CmjtDlLjNV1RSinhCrZMCKO0ILJShCm6j9v0IKKmhHJhTxG71K6pZRJptgCPX2xyW39CV5DF52B7ILH4Ht8HTzpbcpxMtndWbxxJoZ7OGwW0hTtzvqMw4AB_5igxzc2BQ_e2BO8CT6Q7iCysRl2kG10MOLvYYToHmeLVfB3NpZPIcLoHm2Pu4eitY5gcgFf-rR3sVx_7keXyY3z21eLHOJ79HaAMdkPr3OJfq-__lpdkKtv55erz1fECNZmYmwvVS0EgBEtl8oIarhRFVfQcxAN7SpT0Vq0DYWhFbRrZc-bQVilhoZ1rViiT7PuPoa_UwlD34Yp-mKpedUISbkqkS4Rn1EloJSiHfQ-uh3EB82oPrSj53Z0aUe_tKNFIYmZlArYb238J_0f1jNB8pU_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473502852</pqid></control><display><type>article</type><title>Design, Fabrication and Non-destructive Microwave Measurement of a Quad Resonance, Mono-band Metamaterial Polarization Converter Realized by a Fractal Inspired Split-Ring Resonator</title><source>Springer Link</source><creator>Sahu, Arpit ; Chaudhary, Varun ; Yadav, Ravi ; Panwar, Ravi</creator><creatorcontrib>Sahu, Arpit ; Chaudhary, Varun ; Yadav, Ravi ; Panwar, Ravi</creatorcontrib><description>The development and measurement of a single layer, wideband, and angularly stable microwave polarization converter (PC), specifically at a low-frequency regime, is still a very challenging task. In this article, a quad resonance, mono-band metamaterial polarization converter is fabricated and measured using a non-destructive free-space microwave measurement setup. A comprehensive study of a single-layer metamaterial (MTM) structure using a miniaturized fractal element array reveals that four resonances can be achieved within its operating frequency band to realize a wide operating band. The proposed MTM-PC is inspired by the split-ring resonator (SRR) based fractal geometry to control the linearly polarized electromagnetic (EM) wave in the C-band. The result shows the average polarization conversion ratio over 87% in a single broad frequency band (i.e., 5.5 GHz to 8.0 GHz). A careful study reveals that wideband response at lower frequency is achieved by introducing four resonances due to fractal inspired SRR geometry. Moreover, the proposed structure is the oblique angle insensitive up to 45°. The results reflect the enormous potential of the proposed approach for various practical EM applications.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-020-08571-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Broadband ; C band ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Conversion ratio ; Converters ; Electronics and Microelectronics ; Fractal geometry ; Fractals ; Frequencies ; Instrumentation ; Linear polarization ; Materials Science ; Metamaterials ; Optical and Electronic Materials ; Original Research Article ; Resonance ; Resonators ; Solid State Physics</subject><ispartof>Journal of electronic materials, 2021-02, Vol.50 (2), p.511-520</ispartof><rights>The Minerals, Metals & Materials Society 2020</rights><rights>The Minerals, Metals & Materials Society 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ced58633aac39258c30c2c8428ad2a370b4c4063970af930b95d27f3e88f71b93</citedby><cites>FETCH-LOGICAL-c319t-ced58633aac39258c30c2c8428ad2a370b4c4063970af930b95d27f3e88f71b93</cites><orcidid>0000-0002-9015-0891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sahu, Arpit</creatorcontrib><creatorcontrib>Chaudhary, Varun</creatorcontrib><creatorcontrib>Yadav, Ravi</creatorcontrib><creatorcontrib>Panwar, Ravi</creatorcontrib><title>Design, Fabrication and Non-destructive Microwave Measurement of a Quad Resonance, Mono-band Metamaterial Polarization Converter Realized by a Fractal Inspired Split-Ring Resonator</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>The development and measurement of a single layer, wideband, and angularly stable microwave polarization converter (PC), specifically at a low-frequency regime, is still a very challenging task. In this article, a quad resonance, mono-band metamaterial polarization converter is fabricated and measured using a non-destructive free-space microwave measurement setup. A comprehensive study of a single-layer metamaterial (MTM) structure using a miniaturized fractal element array reveals that four resonances can be achieved within its operating frequency band to realize a wide operating band. The proposed MTM-PC is inspired by the split-ring resonator (SRR) based fractal geometry to control the linearly polarized electromagnetic (EM) wave in the C-band. The result shows the average polarization conversion ratio over 87% in a single broad frequency band (i.e., 5.5 GHz to 8.0 GHz). A careful study reveals that wideband response at lower frequency is achieved by introducing four resonances due to fractal inspired SRR geometry. Moreover, the proposed structure is the oblique angle insensitive up to 45°. The results reflect the enormous potential of the proposed approach for various practical EM applications.</description><subject>Broadband</subject><subject>C band</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Conversion ratio</subject><subject>Converters</subject><subject>Electronics and Microelectronics</subject><subject>Fractal geometry</subject><subject>Fractals</subject><subject>Frequencies</subject><subject>Instrumentation</subject><subject>Linear polarization</subject><subject>Materials Science</subject><subject>Metamaterials</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Resonance</subject><subject>Resonators</subject><subject>Solid State Physics</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9Uctq3DAUFaGFTKf9ga4E3UaJHpYtL8u0kwQyaZu20J24luVBwSNNJTkh-a58YDRxoLuu7uXe84BzEPrI6CmjtDlLjNV1RSinhCrZMCKO0ILJShCm6j9v0IKKmhHJhTxG71K6pZRJptgCPX2xyW39CV5DF52B7ILH4Ht8HTzpbcpxMtndWbxxJoZ7OGwW0hTtzvqMw4AB_5igxzc2BQ_e2BO8CT6Q7iCysRl2kG10MOLvYYToHmeLVfB3NpZPIcLoHm2Pu4eitY5gcgFf-rR3sVx_7keXyY3z21eLHOJ79HaAMdkPr3OJfq-__lpdkKtv55erz1fECNZmYmwvVS0EgBEtl8oIarhRFVfQcxAN7SpT0Vq0DYWhFbRrZc-bQVilhoZ1rViiT7PuPoa_UwlD34Yp-mKpedUISbkqkS4Rn1EloJSiHfQ-uh3EB82oPrSj53Z0aUe_tKNFIYmZlArYb238J_0f1jNB8pU_</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Sahu, Arpit</creator><creator>Chaudhary, Varun</creator><creator>Yadav, Ravi</creator><creator>Panwar, Ravi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-9015-0891</orcidid></search><sort><creationdate>20210201</creationdate><title>Design, Fabrication and Non-destructive Microwave Measurement of a Quad Resonance, Mono-band Metamaterial Polarization Converter Realized by a Fractal Inspired Split-Ring Resonator</title><author>Sahu, Arpit ; Chaudhary, Varun ; Yadav, Ravi ; Panwar, Ravi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ced58633aac39258c30c2c8428ad2a370b4c4063970af930b95d27f3e88f71b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Broadband</topic><topic>C band</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Conversion ratio</topic><topic>Converters</topic><topic>Electronics and Microelectronics</topic><topic>Fractal geometry</topic><topic>Fractals</topic><topic>Frequencies</topic><topic>Instrumentation</topic><topic>Linear polarization</topic><topic>Materials Science</topic><topic>Metamaterials</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Resonance</topic><topic>Resonators</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahu, Arpit</creatorcontrib><creatorcontrib>Chaudhary, Varun</creatorcontrib><creatorcontrib>Yadav, Ravi</creatorcontrib><creatorcontrib>Panwar, Ravi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahu, Arpit</au><au>Chaudhary, Varun</au><au>Yadav, Ravi</au><au>Panwar, Ravi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design, Fabrication and Non-destructive Microwave Measurement of a Quad Resonance, Mono-band Metamaterial Polarization Converter Realized by a Fractal Inspired Split-Ring Resonator</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>50</volume><issue>2</issue><spage>511</spage><epage>520</epage><pages>511-520</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>The development and measurement of a single layer, wideband, and angularly stable microwave polarization converter (PC), specifically at a low-frequency regime, is still a very challenging task. In this article, a quad resonance, mono-band metamaterial polarization converter is fabricated and measured using a non-destructive free-space microwave measurement setup. A comprehensive study of a single-layer metamaterial (MTM) structure using a miniaturized fractal element array reveals that four resonances can be achieved within its operating frequency band to realize a wide operating band. The proposed MTM-PC is inspired by the split-ring resonator (SRR) based fractal geometry to control the linearly polarized electromagnetic (EM) wave in the C-band. The result shows the average polarization conversion ratio over 87% in a single broad frequency band (i.e., 5.5 GHz to 8.0 GHz). A careful study reveals that wideband response at lower frequency is achieved by introducing four resonances due to fractal inspired SRR geometry. Moreover, the proposed structure is the oblique angle insensitive up to 45°. The results reflect the enormous potential of the proposed approach for various practical EM applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-020-08571-3</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9015-0891</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2021-02, Vol.50 (2), p.511-520 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2473502852 |
source | Springer Link |
subjects | Broadband C band Characterization and Evaluation of Materials Chemistry and Materials Science Conversion ratio Converters Electronics and Microelectronics Fractal geometry Fractals Frequencies Instrumentation Linear polarization Materials Science Metamaterials Optical and Electronic Materials Original Research Article Resonance Resonators Solid State Physics |
title | Design, Fabrication and Non-destructive Microwave Measurement of a Quad Resonance, Mono-band Metamaterial Polarization Converter Realized by a Fractal Inspired Split-Ring Resonator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A35%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design,%20Fabrication%20and%20Non-destructive%20Microwave%20Measurement%20of%20a%20Quad%20Resonance,%20Mono-band%20Metamaterial%20Polarization%20Converter%20Realized%20by%20a%20Fractal%20Inspired%20Split-Ring%20Resonator&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Sahu,%20Arpit&rft.date=2021-02-01&rft.volume=50&rft.issue=2&rft.spage=511&rft.epage=520&rft.pages=511-520&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-020-08571-3&rft_dat=%3Cproquest_cross%3E2473502852%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-ced58633aac39258c30c2c8428ad2a370b4c4063970af930b95d27f3e88f71b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473502852&rft_id=info:pmid/&rfr_iscdi=true |