Loading…

Design, Fabrication and Non-destructive Microwave Measurement of a Quad Resonance, Mono-band Metamaterial Polarization Converter Realized by a Fractal Inspired Split-Ring Resonator

The development and measurement of a single layer, wideband, and angularly stable microwave polarization converter (PC), specifically at a low-frequency regime, is still a very challenging task. In this article, a quad resonance, mono-band metamaterial polarization converter is fabricated and measur...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2021-02, Vol.50 (2), p.511-520
Main Authors: Sahu, Arpit, Chaudhary, Varun, Yadav, Ravi, Panwar, Ravi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-ced58633aac39258c30c2c8428ad2a370b4c4063970af930b95d27f3e88f71b93
cites cdi_FETCH-LOGICAL-c319t-ced58633aac39258c30c2c8428ad2a370b4c4063970af930b95d27f3e88f71b93
container_end_page 520
container_issue 2
container_start_page 511
container_title Journal of electronic materials
container_volume 50
creator Sahu, Arpit
Chaudhary, Varun
Yadav, Ravi
Panwar, Ravi
description The development and measurement of a single layer, wideband, and angularly stable microwave polarization converter (PC), specifically at a low-frequency regime, is still a very challenging task. In this article, a quad resonance, mono-band metamaterial polarization converter is fabricated and measured using a non-destructive free-space microwave measurement setup. A comprehensive study of a single-layer metamaterial (MTM) structure using a miniaturized fractal element array reveals that four resonances can be achieved within its operating frequency band to realize a wide operating band. The proposed MTM-PC is inspired by the split-ring resonator (SRR) based fractal geometry to control the linearly polarized electromagnetic (EM) wave in the C-band. The result shows the average polarization conversion ratio over 87% in a single broad frequency band (i.e., 5.5 GHz to 8.0 GHz). A careful study reveals that wideband response at lower frequency is achieved by introducing four resonances due to fractal inspired SRR geometry. Moreover, the proposed structure is the oblique angle insensitive up to 45°. The results reflect the enormous potential of the proposed approach for various practical EM applications.
doi_str_mv 10.1007/s11664-020-08571-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473502852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473502852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ced58633aac39258c30c2c8428ad2a370b4c4063970af930b95d27f3e88f71b93</originalsourceid><addsrcrecordid>eNp9Uctq3DAUFaGFTKf9ga4E3UaJHpYtL8u0kwQyaZu20J24luVBwSNNJTkh-a58YDRxoLuu7uXe84BzEPrI6CmjtDlLjNV1RSinhCrZMCKO0ILJShCm6j9v0IKKmhHJhTxG71K6pZRJptgCPX2xyW39CV5DF52B7ILH4Ht8HTzpbcpxMtndWbxxJoZ7OGwW0hTtzvqMw4AB_5igxzc2BQ_e2BO8CT6Q7iCysRl2kG10MOLvYYToHmeLVfB3NpZPIcLoHm2Pu4eitY5gcgFf-rR3sVx_7keXyY3z21eLHOJ79HaAMdkPr3OJfq-__lpdkKtv55erz1fECNZmYmwvVS0EgBEtl8oIarhRFVfQcxAN7SpT0Vq0DYWhFbRrZc-bQVilhoZ1rViiT7PuPoa_UwlD34Yp-mKpedUISbkqkS4Rn1EloJSiHfQ-uh3EB82oPrSj53Z0aUe_tKNFIYmZlArYb238J_0f1jNB8pU_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473502852</pqid></control><display><type>article</type><title>Design, Fabrication and Non-destructive Microwave Measurement of a Quad Resonance, Mono-band Metamaterial Polarization Converter Realized by a Fractal Inspired Split-Ring Resonator</title><source>Springer Link</source><creator>Sahu, Arpit ; Chaudhary, Varun ; Yadav, Ravi ; Panwar, Ravi</creator><creatorcontrib>Sahu, Arpit ; Chaudhary, Varun ; Yadav, Ravi ; Panwar, Ravi</creatorcontrib><description>The development and measurement of a single layer, wideband, and angularly stable microwave polarization converter (PC), specifically at a low-frequency regime, is still a very challenging task. In this article, a quad resonance, mono-band metamaterial polarization converter is fabricated and measured using a non-destructive free-space microwave measurement setup. A comprehensive study of a single-layer metamaterial (MTM) structure using a miniaturized fractal element array reveals that four resonances can be achieved within its operating frequency band to realize a wide operating band. The proposed MTM-PC is inspired by the split-ring resonator (SRR) based fractal geometry to control the linearly polarized electromagnetic (EM) wave in the C-band. The result shows the average polarization conversion ratio over 87% in a single broad frequency band (i.e., 5.5 GHz to 8.0 GHz). A careful study reveals that wideband response at lower frequency is achieved by introducing four resonances due to fractal inspired SRR geometry. Moreover, the proposed structure is the oblique angle insensitive up to 45°. The results reflect the enormous potential of the proposed approach for various practical EM applications.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-020-08571-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Broadband ; C band ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Conversion ratio ; Converters ; Electronics and Microelectronics ; Fractal geometry ; Fractals ; Frequencies ; Instrumentation ; Linear polarization ; Materials Science ; Metamaterials ; Optical and Electronic Materials ; Original Research Article ; Resonance ; Resonators ; Solid State Physics</subject><ispartof>Journal of electronic materials, 2021-02, Vol.50 (2), p.511-520</ispartof><rights>The Minerals, Metals &amp; Materials Society 2020</rights><rights>The Minerals, Metals &amp; Materials Society 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ced58633aac39258c30c2c8428ad2a370b4c4063970af930b95d27f3e88f71b93</citedby><cites>FETCH-LOGICAL-c319t-ced58633aac39258c30c2c8428ad2a370b4c4063970af930b95d27f3e88f71b93</cites><orcidid>0000-0002-9015-0891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sahu, Arpit</creatorcontrib><creatorcontrib>Chaudhary, Varun</creatorcontrib><creatorcontrib>Yadav, Ravi</creatorcontrib><creatorcontrib>Panwar, Ravi</creatorcontrib><title>Design, Fabrication and Non-destructive Microwave Measurement of a Quad Resonance, Mono-band Metamaterial Polarization Converter Realized by a Fractal Inspired Split-Ring Resonator</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>The development and measurement of a single layer, wideband, and angularly stable microwave polarization converter (PC), specifically at a low-frequency regime, is still a very challenging task. In this article, a quad resonance, mono-band metamaterial polarization converter is fabricated and measured using a non-destructive free-space microwave measurement setup. A comprehensive study of a single-layer metamaterial (MTM) structure using a miniaturized fractal element array reveals that four resonances can be achieved within its operating frequency band to realize a wide operating band. The proposed MTM-PC is inspired by the split-ring resonator (SRR) based fractal geometry to control the linearly polarized electromagnetic (EM) wave in the C-band. The result shows the average polarization conversion ratio over 87% in a single broad frequency band (i.e., 5.5 GHz to 8.0 GHz). A careful study reveals that wideband response at lower frequency is achieved by introducing four resonances due to fractal inspired SRR geometry. Moreover, the proposed structure is the oblique angle insensitive up to 45°. The results reflect the enormous potential of the proposed approach for various practical EM applications.</description><subject>Broadband</subject><subject>C band</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Conversion ratio</subject><subject>Converters</subject><subject>Electronics and Microelectronics</subject><subject>Fractal geometry</subject><subject>Fractals</subject><subject>Frequencies</subject><subject>Instrumentation</subject><subject>Linear polarization</subject><subject>Materials Science</subject><subject>Metamaterials</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Resonance</subject><subject>Resonators</subject><subject>Solid State Physics</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9Uctq3DAUFaGFTKf9ga4E3UaJHpYtL8u0kwQyaZu20J24luVBwSNNJTkh-a58YDRxoLuu7uXe84BzEPrI6CmjtDlLjNV1RSinhCrZMCKO0ILJShCm6j9v0IKKmhHJhTxG71K6pZRJptgCPX2xyW39CV5DF52B7ILH4Ht8HTzpbcpxMtndWbxxJoZ7OGwW0hTtzvqMw4AB_5igxzc2BQ_e2BO8CT6Q7iCysRl2kG10MOLvYYToHmeLVfB3NpZPIcLoHm2Pu4eitY5gcgFf-rR3sVx_7keXyY3z21eLHOJ79HaAMdkPr3OJfq-__lpdkKtv55erz1fECNZmYmwvVS0EgBEtl8oIarhRFVfQcxAN7SpT0Vq0DYWhFbRrZc-bQVilhoZ1rViiT7PuPoa_UwlD34Yp-mKpedUISbkqkS4Rn1EloJSiHfQ-uh3EB82oPrSj53Z0aUe_tKNFIYmZlArYb238J_0f1jNB8pU_</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Sahu, Arpit</creator><creator>Chaudhary, Varun</creator><creator>Yadav, Ravi</creator><creator>Panwar, Ravi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-9015-0891</orcidid></search><sort><creationdate>20210201</creationdate><title>Design, Fabrication and Non-destructive Microwave Measurement of a Quad Resonance, Mono-band Metamaterial Polarization Converter Realized by a Fractal Inspired Split-Ring Resonator</title><author>Sahu, Arpit ; Chaudhary, Varun ; Yadav, Ravi ; Panwar, Ravi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ced58633aac39258c30c2c8428ad2a370b4c4063970af930b95d27f3e88f71b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Broadband</topic><topic>C band</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Conversion ratio</topic><topic>Converters</topic><topic>Electronics and Microelectronics</topic><topic>Fractal geometry</topic><topic>Fractals</topic><topic>Frequencies</topic><topic>Instrumentation</topic><topic>Linear polarization</topic><topic>Materials Science</topic><topic>Metamaterials</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Resonance</topic><topic>Resonators</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahu, Arpit</creatorcontrib><creatorcontrib>Chaudhary, Varun</creatorcontrib><creatorcontrib>Yadav, Ravi</creatorcontrib><creatorcontrib>Panwar, Ravi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahu, Arpit</au><au>Chaudhary, Varun</au><au>Yadav, Ravi</au><au>Panwar, Ravi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design, Fabrication and Non-destructive Microwave Measurement of a Quad Resonance, Mono-band Metamaterial Polarization Converter Realized by a Fractal Inspired Split-Ring Resonator</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>50</volume><issue>2</issue><spage>511</spage><epage>520</epage><pages>511-520</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>The development and measurement of a single layer, wideband, and angularly stable microwave polarization converter (PC), specifically at a low-frequency regime, is still a very challenging task. In this article, a quad resonance, mono-band metamaterial polarization converter is fabricated and measured using a non-destructive free-space microwave measurement setup. A comprehensive study of a single-layer metamaterial (MTM) structure using a miniaturized fractal element array reveals that four resonances can be achieved within its operating frequency band to realize a wide operating band. The proposed MTM-PC is inspired by the split-ring resonator (SRR) based fractal geometry to control the linearly polarized electromagnetic (EM) wave in the C-band. The result shows the average polarization conversion ratio over 87% in a single broad frequency band (i.e., 5.5 GHz to 8.0 GHz). A careful study reveals that wideband response at lower frequency is achieved by introducing four resonances due to fractal inspired SRR geometry. Moreover, the proposed structure is the oblique angle insensitive up to 45°. The results reflect the enormous potential of the proposed approach for various practical EM applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-020-08571-3</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9015-0891</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2021-02, Vol.50 (2), p.511-520
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2473502852
source Springer Link
subjects Broadband
C band
Characterization and Evaluation of Materials
Chemistry and Materials Science
Conversion ratio
Converters
Electronics and Microelectronics
Fractal geometry
Fractals
Frequencies
Instrumentation
Linear polarization
Materials Science
Metamaterials
Optical and Electronic Materials
Original Research Article
Resonance
Resonators
Solid State Physics
title Design, Fabrication and Non-destructive Microwave Measurement of a Quad Resonance, Mono-band Metamaterial Polarization Converter Realized by a Fractal Inspired Split-Ring Resonator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A35%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design,%20Fabrication%20and%20Non-destructive%20Microwave%20Measurement%20of%20a%20Quad%20Resonance,%20Mono-band%20Metamaterial%20Polarization%20Converter%20Realized%20by%20a%20Fractal%20Inspired%20Split-Ring%20Resonator&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Sahu,%20Arpit&rft.date=2021-02-01&rft.volume=50&rft.issue=2&rft.spage=511&rft.epage=520&rft.pages=511-520&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-020-08571-3&rft_dat=%3Cproquest_cross%3E2473502852%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-ced58633aac39258c30c2c8428ad2a370b4c4063970af930b95d27f3e88f71b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473502852&rft_id=info:pmid/&rfr_iscdi=true