Loading…
Theoretical predictions of thermodynamic and mechanical properties of TMAl (TM = Ni, Fe, Ti)
In this work, the thermodynamic properties of TMAl (TM = Ni, Fe, Ti) compounds were studied at a temperature of 0–1000 K and a pressure of 0–40 GPa through first principles based on density functional theory. The thermal expansion coefficient α and Debye temperature ( θ D ) is sensitive to temperatu...
Saved in:
Published in: | Applied physics. A, Materials science & processing Materials science & processing, 2020-12, Vol.126 (12), Article 930 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-ca6b52959ed5cd622cc828cd751b4322fb5cfcaf000be198d3a8f2f8212a119f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-ca6b52959ed5cd622cc828cd751b4322fb5cfcaf000be198d3a8f2f8212a119f3 |
container_end_page | |
container_issue | 12 |
container_start_page | |
container_title | Applied physics. A, Materials science & processing |
container_volume | 126 |
creator | Zhou, Shenggang Zhang, Cong Xu, Yang Tian, Chang Cao, Yong Luo, Penghui Tian, Meiling You, Yuanqi Wang, Liqiong |
description | In this work, the thermodynamic properties of TMAl (TM = Ni, Fe, Ti) compounds were studied at a temperature of 0–1000 K and a pressure of 0–40 GPa through first principles based on density functional theory. The thermal expansion coefficient α and Debye temperature (
θ
D
) is sensitive to temperature and pressure. The single crystal elastic constants and polycrystalline elastic properties were calculated by the stress–strain method and Voigt–Reuss–Hill approximation. By analyzing the elastic anisotropy index (
A
U
,
A
comp
,
A
shear
, and
A
1
,
A
2
,
A
3
) and the surface structure and projection of Young’s modulus, the anisotropy of TMAl compounds was discussed. In addition, the sound velocities, anisotropy of the sound velocities and the electronic structures were also discussed. |
doi_str_mv | 10.1007/s00339-020-04110-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473779711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473779711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ca6b52959ed5cd622cc828cd751b4322fb5cfcaf000be198d3a8f2f8212a119f3</originalsourceid><addsrcrecordid>eNp9kL9OwzAQxi0EEqXwAkyWWECqwX-SOB4YqooCUgtLmI3j2NRVkxQ7Hbp15TV5EkxTiY2TTrf8vrvvPgAuCb4lGPO7gDFjAmGKEU4IwYgdgQFJGEU4Y_gYDLBIOMqZyE7BWQhLHCuhdADei4VpvemcViu49qZyunNtE2BrYbcwvm6rbaNqp6FqKlgbvVDNgW3XxnfO7NFiPl7B62L-vfu6j_3iRnBqRrBwN-fgxKpVMBeHOQRv04di8oRmr4_Pk_EMaUZEh7TKypSKVJgq1VVGqdY5zXXFU1LGN6gtU221stF3aYjIK6ZyS21OCVWECMuG4KrfG419bkzo5LLd-CaelDThjHPBCYkU7Snt2xC8sXLtXa38VhIsf5OUfZIyJin3SUoWRawXhQg3H8b_rf5H9QMcsXcr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473779711</pqid></control><display><type>article</type><title>Theoretical predictions of thermodynamic and mechanical properties of TMAl (TM = Ni, Fe, Ti)</title><source>Springer Link</source><creator>Zhou, Shenggang ; Zhang, Cong ; Xu, Yang ; Tian, Chang ; Cao, Yong ; Luo, Penghui ; Tian, Meiling ; You, Yuanqi ; Wang, Liqiong</creator><creatorcontrib>Zhou, Shenggang ; Zhang, Cong ; Xu, Yang ; Tian, Chang ; Cao, Yong ; Luo, Penghui ; Tian, Meiling ; You, Yuanqi ; Wang, Liqiong</creatorcontrib><description>In this work, the thermodynamic properties of TMAl (TM = Ni, Fe, Ti) compounds were studied at a temperature of 0–1000 K and a pressure of 0–40 GPa through first principles based on density functional theory. The thermal expansion coefficient α and Debye temperature (
θ
D
) is sensitive to temperature and pressure. The single crystal elastic constants and polycrystalline elastic properties were calculated by the stress–strain method and Voigt–Reuss–Hill approximation. By analyzing the elastic anisotropy index (
A
U
,
A
comp
,
A
shear
, and
A
1
,
A
2
,
A
3
) and the surface structure and projection of Young’s modulus, the anisotropy of TMAl compounds was discussed. In addition, the sound velocities, anisotropy of the sound velocities and the electronic structures were also discussed.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-020-04110-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustic velocity ; Anisotropy ; Applied physics ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Density functional theory ; Elastic analysis ; Elastic anisotropy ; Elastic properties ; First principles ; Forecasting ; Iron ; Machines ; Manufacturing ; Materials science ; Mathematical analysis ; Mechanical properties ; Modulus of elasticity ; Nanotechnology ; Nickel compounds ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Single crystals ; Specific heat ; Strain ; Surface structure ; Surfaces and Interfaces ; Thermal expansion ; Thermodynamic properties ; Thin Films ; Titanium</subject><ispartof>Applied physics. A, Materials science & processing, 2020-12, Vol.126 (12), Article 930</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ca6b52959ed5cd622cc828cd751b4322fb5cfcaf000be198d3a8f2f8212a119f3</citedby><cites>FETCH-LOGICAL-c319t-ca6b52959ed5cd622cc828cd751b4322fb5cfcaf000be198d3a8f2f8212a119f3</cites><orcidid>0000-0003-2169-100X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhou, Shenggang</creatorcontrib><creatorcontrib>Zhang, Cong</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Tian, Chang</creatorcontrib><creatorcontrib>Cao, Yong</creatorcontrib><creatorcontrib>Luo, Penghui</creatorcontrib><creatorcontrib>Tian, Meiling</creatorcontrib><creatorcontrib>You, Yuanqi</creatorcontrib><creatorcontrib>Wang, Liqiong</creatorcontrib><title>Theoretical predictions of thermodynamic and mechanical properties of TMAl (TM = Ni, Fe, Ti)</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>In this work, the thermodynamic properties of TMAl (TM = Ni, Fe, Ti) compounds were studied at a temperature of 0–1000 K and a pressure of 0–40 GPa through first principles based on density functional theory. The thermal expansion coefficient α and Debye temperature (
θ
D
) is sensitive to temperature and pressure. The single crystal elastic constants and polycrystalline elastic properties were calculated by the stress–strain method and Voigt–Reuss–Hill approximation. By analyzing the elastic anisotropy index (
A
U
,
A
comp
,
A
shear
, and
A
1
,
A
2
,
A
3
) and the surface structure and projection of Young’s modulus, the anisotropy of TMAl compounds was discussed. In addition, the sound velocities, anisotropy of the sound velocities and the electronic structures were also discussed.</description><subject>Acoustic velocity</subject><subject>Anisotropy</subject><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Density functional theory</subject><subject>Elastic analysis</subject><subject>Elastic anisotropy</subject><subject>Elastic properties</subject><subject>First principles</subject><subject>Forecasting</subject><subject>Iron</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Nanotechnology</subject><subject>Nickel compounds</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Single crystals</subject><subject>Specific heat</subject><subject>Strain</subject><subject>Surface structure</subject><subject>Surfaces and Interfaces</subject><subject>Thermal expansion</subject><subject>Thermodynamic properties</subject><subject>Thin Films</subject><subject>Titanium</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kL9OwzAQxi0EEqXwAkyWWECqwX-SOB4YqooCUgtLmI3j2NRVkxQ7Hbp15TV5EkxTiY2TTrf8vrvvPgAuCb4lGPO7gDFjAmGKEU4IwYgdgQFJGEU4Y_gYDLBIOMqZyE7BWQhLHCuhdADei4VpvemcViu49qZyunNtE2BrYbcwvm6rbaNqp6FqKlgbvVDNgW3XxnfO7NFiPl7B62L-vfu6j_3iRnBqRrBwN-fgxKpVMBeHOQRv04di8oRmr4_Pk_EMaUZEh7TKypSKVJgq1VVGqdY5zXXFU1LGN6gtU221stF3aYjIK6ZyS21OCVWECMuG4KrfG419bkzo5LLd-CaelDThjHPBCYkU7Snt2xC8sXLtXa38VhIsf5OUfZIyJin3SUoWRawXhQg3H8b_rf5H9QMcsXcr</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Zhou, Shenggang</creator><creator>Zhang, Cong</creator><creator>Xu, Yang</creator><creator>Tian, Chang</creator><creator>Cao, Yong</creator><creator>Luo, Penghui</creator><creator>Tian, Meiling</creator><creator>You, Yuanqi</creator><creator>Wang, Liqiong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2169-100X</orcidid></search><sort><creationdate>20201201</creationdate><title>Theoretical predictions of thermodynamic and mechanical properties of TMAl (TM = Ni, Fe, Ti)</title><author>Zhou, Shenggang ; Zhang, Cong ; Xu, Yang ; Tian, Chang ; Cao, Yong ; Luo, Penghui ; Tian, Meiling ; You, Yuanqi ; Wang, Liqiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ca6b52959ed5cd622cc828cd751b4322fb5cfcaf000be198d3a8f2f8212a119f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic velocity</topic><topic>Anisotropy</topic><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Density functional theory</topic><topic>Elastic analysis</topic><topic>Elastic anisotropy</topic><topic>Elastic properties</topic><topic>First principles</topic><topic>Forecasting</topic><topic>Iron</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Nanotechnology</topic><topic>Nickel compounds</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Single crystals</topic><topic>Specific heat</topic><topic>Strain</topic><topic>Surface structure</topic><topic>Surfaces and Interfaces</topic><topic>Thermal expansion</topic><topic>Thermodynamic properties</topic><topic>Thin Films</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Shenggang</creatorcontrib><creatorcontrib>Zhang, Cong</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Tian, Chang</creatorcontrib><creatorcontrib>Cao, Yong</creatorcontrib><creatorcontrib>Luo, Penghui</creatorcontrib><creatorcontrib>Tian, Meiling</creatorcontrib><creatorcontrib>You, Yuanqi</creatorcontrib><creatorcontrib>Wang, Liqiong</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Shenggang</au><au>Zhang, Cong</au><au>Xu, Yang</au><au>Tian, Chang</au><au>Cao, Yong</au><au>Luo, Penghui</au><au>Tian, Meiling</au><au>You, Yuanqi</au><au>Wang, Liqiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical predictions of thermodynamic and mechanical properties of TMAl (TM = Ni, Fe, Ti)</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>126</volume><issue>12</issue><artnum>930</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>In this work, the thermodynamic properties of TMAl (TM = Ni, Fe, Ti) compounds were studied at a temperature of 0–1000 K and a pressure of 0–40 GPa through first principles based on density functional theory. The thermal expansion coefficient α and Debye temperature (
θ
D
) is sensitive to temperature and pressure. The single crystal elastic constants and polycrystalline elastic properties were calculated by the stress–strain method and Voigt–Reuss–Hill approximation. By analyzing the elastic anisotropy index (
A
U
,
A
comp
,
A
shear
, and
A
1
,
A
2
,
A
3
) and the surface structure and projection of Young’s modulus, the anisotropy of TMAl compounds was discussed. In addition, the sound velocities, anisotropy of the sound velocities and the electronic structures were also discussed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-020-04110-3</doi><orcidid>https://orcid.org/0000-0003-2169-100X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2020-12, Vol.126 (12), Article 930 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_journals_2473779711 |
source | Springer Link |
subjects | Acoustic velocity Anisotropy Applied physics Characterization and Evaluation of Materials Condensed Matter Physics Density functional theory Elastic analysis Elastic anisotropy Elastic properties First principles Forecasting Iron Machines Manufacturing Materials science Mathematical analysis Mechanical properties Modulus of elasticity Nanotechnology Nickel compounds Optical and Electronic Materials Physics Physics and Astronomy Processes Single crystals Specific heat Strain Surface structure Surfaces and Interfaces Thermal expansion Thermodynamic properties Thin Films Titanium |
title | Theoretical predictions of thermodynamic and mechanical properties of TMAl (TM = Ni, Fe, Ti) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A56%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20predictions%20of%20thermodynamic%20and%20mechanical%20properties%20of%20TMAl%20(TM%E2%80%89=%E2%80%89Ni,%20Fe,%20Ti)&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Zhou,%20Shenggang&rft.date=2020-12-01&rft.volume=126&rft.issue=12&rft.artnum=930&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-020-04110-3&rft_dat=%3Cproquest_cross%3E2473779711%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-ca6b52959ed5cd622cc828cd751b4322fb5cfcaf000be198d3a8f2f8212a119f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473779711&rft_id=info:pmid/&rfr_iscdi=true |