Loading…

Theoretical predictions of thermodynamic and mechanical properties of TMAl (TM = Ni, Fe, Ti)

In this work, the thermodynamic properties of TMAl (TM = Ni, Fe, Ti) compounds were studied at a temperature of 0–1000 K and a pressure of 0–40 GPa through first principles based on density functional theory. The thermal expansion coefficient α and Debye temperature ( θ D ) is sensitive to temperatu...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics. A, Materials science & processing Materials science & processing, 2020-12, Vol.126 (12), Article 930
Main Authors: Zhou, Shenggang, Zhang, Cong, Xu, Yang, Tian, Chang, Cao, Yong, Luo, Penghui, Tian, Meiling, You, Yuanqi, Wang, Liqiong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-ca6b52959ed5cd622cc828cd751b4322fb5cfcaf000be198d3a8f2f8212a119f3
cites cdi_FETCH-LOGICAL-c319t-ca6b52959ed5cd622cc828cd751b4322fb5cfcaf000be198d3a8f2f8212a119f3
container_end_page
container_issue 12
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 126
creator Zhou, Shenggang
Zhang, Cong
Xu, Yang
Tian, Chang
Cao, Yong
Luo, Penghui
Tian, Meiling
You, Yuanqi
Wang, Liqiong
description In this work, the thermodynamic properties of TMAl (TM = Ni, Fe, Ti) compounds were studied at a temperature of 0–1000 K and a pressure of 0–40 GPa through first principles based on density functional theory. The thermal expansion coefficient α and Debye temperature ( θ D ) is sensitive to temperature and pressure. The single crystal elastic constants and polycrystalline elastic properties were calculated by the stress–strain method and Voigt–Reuss–Hill approximation. By analyzing the elastic anisotropy index ( A U , A comp , A shear , and A 1 , A 2 , A 3 ) and the surface structure and projection of Young’s modulus, the anisotropy of TMAl compounds was discussed. In addition, the sound velocities, anisotropy of the sound velocities and the electronic structures were also discussed.
doi_str_mv 10.1007/s00339-020-04110-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473779711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473779711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ca6b52959ed5cd622cc828cd751b4322fb5cfcaf000be198d3a8f2f8212a119f3</originalsourceid><addsrcrecordid>eNp9kL9OwzAQxi0EEqXwAkyWWECqwX-SOB4YqooCUgtLmI3j2NRVkxQ7Hbp15TV5EkxTiY2TTrf8vrvvPgAuCb4lGPO7gDFjAmGKEU4IwYgdgQFJGEU4Y_gYDLBIOMqZyE7BWQhLHCuhdADei4VpvemcViu49qZyunNtE2BrYbcwvm6rbaNqp6FqKlgbvVDNgW3XxnfO7NFiPl7B62L-vfu6j_3iRnBqRrBwN-fgxKpVMBeHOQRv04di8oRmr4_Pk_EMaUZEh7TKypSKVJgq1VVGqdY5zXXFU1LGN6gtU221stF3aYjIK6ZyS21OCVWECMuG4KrfG419bkzo5LLd-CaelDThjHPBCYkU7Snt2xC8sXLtXa38VhIsf5OUfZIyJin3SUoWRawXhQg3H8b_rf5H9QMcsXcr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473779711</pqid></control><display><type>article</type><title>Theoretical predictions of thermodynamic and mechanical properties of TMAl (TM = Ni, Fe, Ti)</title><source>Springer Link</source><creator>Zhou, Shenggang ; Zhang, Cong ; Xu, Yang ; Tian, Chang ; Cao, Yong ; Luo, Penghui ; Tian, Meiling ; You, Yuanqi ; Wang, Liqiong</creator><creatorcontrib>Zhou, Shenggang ; Zhang, Cong ; Xu, Yang ; Tian, Chang ; Cao, Yong ; Luo, Penghui ; Tian, Meiling ; You, Yuanqi ; Wang, Liqiong</creatorcontrib><description>In this work, the thermodynamic properties of TMAl (TM = Ni, Fe, Ti) compounds were studied at a temperature of 0–1000 K and a pressure of 0–40 GPa through first principles based on density functional theory. The thermal expansion coefficient α and Debye temperature ( θ D ) is sensitive to temperature and pressure. The single crystal elastic constants and polycrystalline elastic properties were calculated by the stress–strain method and Voigt–Reuss–Hill approximation. By analyzing the elastic anisotropy index ( A U , A comp , A shear , and A 1 , A 2 , A 3 ) and the surface structure and projection of Young’s modulus, the anisotropy of TMAl compounds was discussed. In addition, the sound velocities, anisotropy of the sound velocities and the electronic structures were also discussed.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-020-04110-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustic velocity ; Anisotropy ; Applied physics ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Density functional theory ; Elastic analysis ; Elastic anisotropy ; Elastic properties ; First principles ; Forecasting ; Iron ; Machines ; Manufacturing ; Materials science ; Mathematical analysis ; Mechanical properties ; Modulus of elasticity ; Nanotechnology ; Nickel compounds ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Single crystals ; Specific heat ; Strain ; Surface structure ; Surfaces and Interfaces ; Thermal expansion ; Thermodynamic properties ; Thin Films ; Titanium</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2020-12, Vol.126 (12), Article 930</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ca6b52959ed5cd622cc828cd751b4322fb5cfcaf000be198d3a8f2f8212a119f3</citedby><cites>FETCH-LOGICAL-c319t-ca6b52959ed5cd622cc828cd751b4322fb5cfcaf000be198d3a8f2f8212a119f3</cites><orcidid>0000-0003-2169-100X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhou, Shenggang</creatorcontrib><creatorcontrib>Zhang, Cong</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Tian, Chang</creatorcontrib><creatorcontrib>Cao, Yong</creatorcontrib><creatorcontrib>Luo, Penghui</creatorcontrib><creatorcontrib>Tian, Meiling</creatorcontrib><creatorcontrib>You, Yuanqi</creatorcontrib><creatorcontrib>Wang, Liqiong</creatorcontrib><title>Theoretical predictions of thermodynamic and mechanical properties of TMAl (TM = Ni, Fe, Ti)</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>In this work, the thermodynamic properties of TMAl (TM = Ni, Fe, Ti) compounds were studied at a temperature of 0–1000 K and a pressure of 0–40 GPa through first principles based on density functional theory. The thermal expansion coefficient α and Debye temperature ( θ D ) is sensitive to temperature and pressure. The single crystal elastic constants and polycrystalline elastic properties were calculated by the stress–strain method and Voigt–Reuss–Hill approximation. By analyzing the elastic anisotropy index ( A U , A comp , A shear , and A 1 , A 2 , A 3 ) and the surface structure and projection of Young’s modulus, the anisotropy of TMAl compounds was discussed. In addition, the sound velocities, anisotropy of the sound velocities and the electronic structures were also discussed.</description><subject>Acoustic velocity</subject><subject>Anisotropy</subject><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Density functional theory</subject><subject>Elastic analysis</subject><subject>Elastic anisotropy</subject><subject>Elastic properties</subject><subject>First principles</subject><subject>Forecasting</subject><subject>Iron</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Nanotechnology</subject><subject>Nickel compounds</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Single crystals</subject><subject>Specific heat</subject><subject>Strain</subject><subject>Surface structure</subject><subject>Surfaces and Interfaces</subject><subject>Thermal expansion</subject><subject>Thermodynamic properties</subject><subject>Thin Films</subject><subject>Titanium</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kL9OwzAQxi0EEqXwAkyWWECqwX-SOB4YqooCUgtLmI3j2NRVkxQ7Hbp15TV5EkxTiY2TTrf8vrvvPgAuCb4lGPO7gDFjAmGKEU4IwYgdgQFJGEU4Y_gYDLBIOMqZyE7BWQhLHCuhdADei4VpvemcViu49qZyunNtE2BrYbcwvm6rbaNqp6FqKlgbvVDNgW3XxnfO7NFiPl7B62L-vfu6j_3iRnBqRrBwN-fgxKpVMBeHOQRv04di8oRmr4_Pk_EMaUZEh7TKypSKVJgq1VVGqdY5zXXFU1LGN6gtU221stF3aYjIK6ZyS21OCVWECMuG4KrfG419bkzo5LLd-CaelDThjHPBCYkU7Snt2xC8sXLtXa38VhIsf5OUfZIyJin3SUoWRawXhQg3H8b_rf5H9QMcsXcr</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Zhou, Shenggang</creator><creator>Zhang, Cong</creator><creator>Xu, Yang</creator><creator>Tian, Chang</creator><creator>Cao, Yong</creator><creator>Luo, Penghui</creator><creator>Tian, Meiling</creator><creator>You, Yuanqi</creator><creator>Wang, Liqiong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2169-100X</orcidid></search><sort><creationdate>20201201</creationdate><title>Theoretical predictions of thermodynamic and mechanical properties of TMAl (TM = Ni, Fe, Ti)</title><author>Zhou, Shenggang ; Zhang, Cong ; Xu, Yang ; Tian, Chang ; Cao, Yong ; Luo, Penghui ; Tian, Meiling ; You, Yuanqi ; Wang, Liqiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ca6b52959ed5cd622cc828cd751b4322fb5cfcaf000be198d3a8f2f8212a119f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic velocity</topic><topic>Anisotropy</topic><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Density functional theory</topic><topic>Elastic analysis</topic><topic>Elastic anisotropy</topic><topic>Elastic properties</topic><topic>First principles</topic><topic>Forecasting</topic><topic>Iron</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Nanotechnology</topic><topic>Nickel compounds</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Single crystals</topic><topic>Specific heat</topic><topic>Strain</topic><topic>Surface structure</topic><topic>Surfaces and Interfaces</topic><topic>Thermal expansion</topic><topic>Thermodynamic properties</topic><topic>Thin Films</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Shenggang</creatorcontrib><creatorcontrib>Zhang, Cong</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Tian, Chang</creatorcontrib><creatorcontrib>Cao, Yong</creatorcontrib><creatorcontrib>Luo, Penghui</creatorcontrib><creatorcontrib>Tian, Meiling</creatorcontrib><creatorcontrib>You, Yuanqi</creatorcontrib><creatorcontrib>Wang, Liqiong</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Shenggang</au><au>Zhang, Cong</au><au>Xu, Yang</au><au>Tian, Chang</au><au>Cao, Yong</au><au>Luo, Penghui</au><au>Tian, Meiling</au><au>You, Yuanqi</au><au>Wang, Liqiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical predictions of thermodynamic and mechanical properties of TMAl (TM = Ni, Fe, Ti)</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>126</volume><issue>12</issue><artnum>930</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>In this work, the thermodynamic properties of TMAl (TM = Ni, Fe, Ti) compounds were studied at a temperature of 0–1000 K and a pressure of 0–40 GPa through first principles based on density functional theory. The thermal expansion coefficient α and Debye temperature ( θ D ) is sensitive to temperature and pressure. The single crystal elastic constants and polycrystalline elastic properties were calculated by the stress–strain method and Voigt–Reuss–Hill approximation. By analyzing the elastic anisotropy index ( A U , A comp , A shear , and A 1 , A 2 , A 3 ) and the surface structure and projection of Young’s modulus, the anisotropy of TMAl compounds was discussed. In addition, the sound velocities, anisotropy of the sound velocities and the electronic structures were also discussed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-020-04110-3</doi><orcidid>https://orcid.org/0000-0003-2169-100X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2020-12, Vol.126 (12), Article 930
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2473779711
source Springer Link
subjects Acoustic velocity
Anisotropy
Applied physics
Characterization and Evaluation of Materials
Condensed Matter Physics
Density functional theory
Elastic analysis
Elastic anisotropy
Elastic properties
First principles
Forecasting
Iron
Machines
Manufacturing
Materials science
Mathematical analysis
Mechanical properties
Modulus of elasticity
Nanotechnology
Nickel compounds
Optical and Electronic Materials
Physics
Physics and Astronomy
Processes
Single crystals
Specific heat
Strain
Surface structure
Surfaces and Interfaces
Thermal expansion
Thermodynamic properties
Thin Films
Titanium
title Theoretical predictions of thermodynamic and mechanical properties of TMAl (TM = Ni, Fe, Ti)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A56%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20predictions%20of%20thermodynamic%20and%20mechanical%20properties%20of%20TMAl%20(TM%E2%80%89=%E2%80%89Ni,%20Fe,%20Ti)&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Zhou,%20Shenggang&rft.date=2020-12-01&rft.volume=126&rft.issue=12&rft.artnum=930&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-020-04110-3&rft_dat=%3Cproquest_cross%3E2473779711%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-ca6b52959ed5cd622cc828cd751b4322fb5cfcaf000be198d3a8f2f8212a119f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473779711&rft_id=info:pmid/&rfr_iscdi=true