Loading…

How to grow it? Strategies of mathematical development presented by the example of enumerating certain set partitions

We describe in the form of a dialogue a development of various reflections on the combinatorics of set partitions; among the topics we pursue are the number of ways of partitioning a finite set into a fixed number d of subsets of odd or even size, into a parts of odd and b parts of even size, and in...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische Semesterberichte 2020-10, Vol.67 (2), p.237-261
Main Authors: Carl, Merlin, Schmitz, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c185y-392729ed6d017a688845264bf81e76bd282606ecf453fa1e24fd301c827e6ed03
container_end_page 261
container_issue 2
container_start_page 237
container_title Mathematische Semesterberichte
container_volume 67
creator Carl, Merlin
Schmitz, Michael
description We describe in the form of a dialogue a development of various reflections on the combinatorics of set partitions; among the topics we pursue are the number of ways of partitioning a finite set into a fixed number d of subsets of odd or even size, into a parts of odd and b parts of even size, and into d parts, each of which has a size in a certain congruence class modulo some natural number m . To this end, pattern guessing, recursion and induction, combinatorial interpretation and generating functions are employed. The participants of the dialogue represent different perspectives on and approaches to mathematics.
doi_str_mv 10.1007/s00591-019-00267-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473780806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473780806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c185y-392729ed6d017a688845264bf81e76bd282606ecf453fa1e24fd301c827e6ed03</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcB19WXtE3SlcigjjDgQgV3IdO-1g79MknV_nszVnDn5t3NOffBJeScwSUDkFcOIM1YBCyLALiQ0XRAFiyJecQUSw_JAiSHSHL1ekxOnNsFiKUsW5Bx3X9S39PKhqz9NX3y1nisanS0L2lr_BuGU-emoQV-YNMPLXaeDhZdSCzodqKBofhl2qHBvYTd2GJoqbuK5mi9qTvqMDjG-trXfedOyVFpGodnv7kkL3e3z6t1tHm8f1jdbKKcqXSK4oxLnmEhCmDSCKVUknKRbEvFUIptwRUXIDAvkzQuDUOelEUMLFdcosAC4iW5mHsH27-P6Lze9aPtwkvNExlLBQpEoPhM5bZ3zmKpB1u3xk6agd7Pq-d5dZhX_8yrpyDFs-QC3FVo_6r_sb4BX_R_sA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473780806</pqid></control><display><type>article</type><title>How to grow it? Strategies of mathematical development presented by the example of enumerating certain set partitions</title><source>Springer Link</source><creator>Carl, Merlin ; Schmitz, Michael</creator><creatorcontrib>Carl, Merlin ; Schmitz, Michael</creatorcontrib><description>We describe in the form of a dialogue a development of various reflections on the combinatorics of set partitions; among the topics we pursue are the number of ways of partitioning a finite set into a fixed number d of subsets of odd or even size, into a parts of odd and b parts of even size, and into d parts, each of which has a size in a certain congruence class modulo some natural number m . To this end, pattern guessing, recursion and induction, combinatorial interpretation and generating functions are employed. The participants of the dialogue represent different perspectives on and approaches to mathematics.</description><identifier>ISSN: 0720-728X</identifier><identifier>EISSN: 1432-1815</identifier><identifier>DOI: 10.1007/s00591-019-00267-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Combinatorial analysis ; Mathematics ; Mathematics and Statistics ; Mathematik in der Lehre ; Partitions (mathematics)</subject><ispartof>Mathematische Semesterberichte, 2020-10, Vol.67 (2), p.237-261</ispartof><rights>Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019</rights><rights>Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c185y-392729ed6d017a688845264bf81e76bd282606ecf453fa1e24fd301c827e6ed03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Carl, Merlin</creatorcontrib><creatorcontrib>Schmitz, Michael</creatorcontrib><title>How to grow it? Strategies of mathematical development presented by the example of enumerating certain set partitions</title><title>Mathematische Semesterberichte</title><addtitle>Math Semesterber</addtitle><description>We describe in the form of a dialogue a development of various reflections on the combinatorics of set partitions; among the topics we pursue are the number of ways of partitioning a finite set into a fixed number d of subsets of odd or even size, into a parts of odd and b parts of even size, and into d parts, each of which has a size in a certain congruence class modulo some natural number m . To this end, pattern guessing, recursion and induction, combinatorial interpretation and generating functions are employed. The participants of the dialogue represent different perspectives on and approaches to mathematics.</description><subject>Combinatorial analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematik in der Lehre</subject><subject>Partitions (mathematics)</subject><issn>0720-728X</issn><issn>1432-1815</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AVcB19WXtE3SlcigjjDgQgV3IdO-1g79MknV_nszVnDn5t3NOffBJeScwSUDkFcOIM1YBCyLALiQ0XRAFiyJecQUSw_JAiSHSHL1ekxOnNsFiKUsW5Bx3X9S39PKhqz9NX3y1nisanS0L2lr_BuGU-emoQV-YNMPLXaeDhZdSCzodqKBofhl2qHBvYTd2GJoqbuK5mi9qTvqMDjG-trXfedOyVFpGodnv7kkL3e3z6t1tHm8f1jdbKKcqXSK4oxLnmEhCmDSCKVUknKRbEvFUIptwRUXIDAvkzQuDUOelEUMLFdcosAC4iW5mHsH27-P6Lze9aPtwkvNExlLBQpEoPhM5bZ3zmKpB1u3xk6agd7Pq-d5dZhX_8yrpyDFs-QC3FVo_6r_sb4BX_R_sA</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Carl, Merlin</creator><creator>Schmitz, Michael</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201001</creationdate><title>How to grow it? Strategies of mathematical development presented by the example of enumerating certain set partitions</title><author>Carl, Merlin ; Schmitz, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c185y-392729ed6d017a688845264bf81e76bd282606ecf453fa1e24fd301c827e6ed03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Combinatorial analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematik in der Lehre</topic><topic>Partitions (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carl, Merlin</creatorcontrib><creatorcontrib>Schmitz, Michael</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Semesterberichte</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carl, Merlin</au><au>Schmitz, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to grow it? Strategies of mathematical development presented by the example of enumerating certain set partitions</atitle><jtitle>Mathematische Semesterberichte</jtitle><stitle>Math Semesterber</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>67</volume><issue>2</issue><spage>237</spage><epage>261</epage><pages>237-261</pages><issn>0720-728X</issn><eissn>1432-1815</eissn><abstract>We describe in the form of a dialogue a development of various reflections on the combinatorics of set partitions; among the topics we pursue are the number of ways of partitioning a finite set into a fixed number d of subsets of odd or even size, into a parts of odd and b parts of even size, and into d parts, each of which has a size in a certain congruence class modulo some natural number m . To this end, pattern guessing, recursion and induction, combinatorial interpretation and generating functions are employed. The participants of the dialogue represent different perspectives on and approaches to mathematics.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00591-019-00267-y</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0720-728X
ispartof Mathematische Semesterberichte, 2020-10, Vol.67 (2), p.237-261
issn 0720-728X
1432-1815
language eng
recordid cdi_proquest_journals_2473780806
source Springer Link
subjects Combinatorial analysis
Mathematics
Mathematics and Statistics
Mathematik in der Lehre
Partitions (mathematics)
title How to grow it? Strategies of mathematical development presented by the example of enumerating certain set partitions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20grow%20it?%20Strategies%20of%20mathematical%20development%20presented%20by%20the%20example%20of%20enumerating%20certain%20set%20partitions&rft.jtitle=Mathematische%20Semesterberichte&rft.au=Carl,%20Merlin&rft.date=2020-10-01&rft.volume=67&rft.issue=2&rft.spage=237&rft.epage=261&rft.pages=237-261&rft.issn=0720-728X&rft.eissn=1432-1815&rft_id=info:doi/10.1007/s00591-019-00267-y&rft_dat=%3Cproquest_cross%3E2473780806%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c185y-392729ed6d017a688845264bf81e76bd282606ecf453fa1e24fd301c827e6ed03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473780806&rft_id=info:pmid/&rfr_iscdi=true