Loading…
How to grow it? Strategies of mathematical development presented by the example of enumerating certain set partitions
We describe in the form of a dialogue a development of various reflections on the combinatorics of set partitions; among the topics we pursue are the number of ways of partitioning a finite set into a fixed number d of subsets of odd or even size, into a parts of odd and b parts of even size, and in...
Saved in:
Published in: | Mathematische Semesterberichte 2020-10, Vol.67 (2), p.237-261 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c185y-392729ed6d017a688845264bf81e76bd282606ecf453fa1e24fd301c827e6ed03 |
container_end_page | 261 |
container_issue | 2 |
container_start_page | 237 |
container_title | Mathematische Semesterberichte |
container_volume | 67 |
creator | Carl, Merlin Schmitz, Michael |
description | We describe in the form of a dialogue a development of various reflections on the combinatorics of set partitions; among the topics we pursue are the number of ways of partitioning a finite set into a fixed number
d
of subsets of odd or even size, into
a
parts of odd and
b
parts of even size, and into
d
parts, each of which has a size in a certain congruence class modulo some natural number
m
. To this end, pattern guessing, recursion and induction, combinatorial interpretation and generating functions are employed. The participants of the dialogue represent different perspectives on and approaches to mathematics. |
doi_str_mv | 10.1007/s00591-019-00267-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473780806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473780806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c185y-392729ed6d017a688845264bf81e76bd282606ecf453fa1e24fd301c827e6ed03</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcB19WXtE3SlcigjjDgQgV3IdO-1g79MknV_nszVnDn5t3NOffBJeScwSUDkFcOIM1YBCyLALiQ0XRAFiyJecQUSw_JAiSHSHL1ekxOnNsFiKUsW5Bx3X9S39PKhqz9NX3y1nisanS0L2lr_BuGU-emoQV-YNMPLXaeDhZdSCzodqKBofhl2qHBvYTd2GJoqbuK5mi9qTvqMDjG-trXfedOyVFpGodnv7kkL3e3z6t1tHm8f1jdbKKcqXSK4oxLnmEhCmDSCKVUknKRbEvFUIptwRUXIDAvkzQuDUOelEUMLFdcosAC4iW5mHsH27-P6Lze9aPtwkvNExlLBQpEoPhM5bZ3zmKpB1u3xk6agd7Pq-d5dZhX_8yrpyDFs-QC3FVo_6r_sb4BX_R_sA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473780806</pqid></control><display><type>article</type><title>How to grow it? Strategies of mathematical development presented by the example of enumerating certain set partitions</title><source>Springer Link</source><creator>Carl, Merlin ; Schmitz, Michael</creator><creatorcontrib>Carl, Merlin ; Schmitz, Michael</creatorcontrib><description>We describe in the form of a dialogue a development of various reflections on the combinatorics of set partitions; among the topics we pursue are the number of ways of partitioning a finite set into a fixed number
d
of subsets of odd or even size, into
a
parts of odd and
b
parts of even size, and into
d
parts, each of which has a size in a certain congruence class modulo some natural number
m
. To this end, pattern guessing, recursion and induction, combinatorial interpretation and generating functions are employed. The participants of the dialogue represent different perspectives on and approaches to mathematics.</description><identifier>ISSN: 0720-728X</identifier><identifier>EISSN: 1432-1815</identifier><identifier>DOI: 10.1007/s00591-019-00267-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Combinatorial analysis ; Mathematics ; Mathematics and Statistics ; Mathematik in der Lehre ; Partitions (mathematics)</subject><ispartof>Mathematische Semesterberichte, 2020-10, Vol.67 (2), p.237-261</ispartof><rights>Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019</rights><rights>Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c185y-392729ed6d017a688845264bf81e76bd282606ecf453fa1e24fd301c827e6ed03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Carl, Merlin</creatorcontrib><creatorcontrib>Schmitz, Michael</creatorcontrib><title>How to grow it? Strategies of mathematical development presented by the example of enumerating certain set partitions</title><title>Mathematische Semesterberichte</title><addtitle>Math Semesterber</addtitle><description>We describe in the form of a dialogue a development of various reflections on the combinatorics of set partitions; among the topics we pursue are the number of ways of partitioning a finite set into a fixed number
d
of subsets of odd or even size, into
a
parts of odd and
b
parts of even size, and into
d
parts, each of which has a size in a certain congruence class modulo some natural number
m
. To this end, pattern guessing, recursion and induction, combinatorial interpretation and generating functions are employed. The participants of the dialogue represent different perspectives on and approaches to mathematics.</description><subject>Combinatorial analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematik in der Lehre</subject><subject>Partitions (mathematics)</subject><issn>0720-728X</issn><issn>1432-1815</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AVcB19WXtE3SlcigjjDgQgV3IdO-1g79MknV_nszVnDn5t3NOffBJeScwSUDkFcOIM1YBCyLALiQ0XRAFiyJecQUSw_JAiSHSHL1ekxOnNsFiKUsW5Bx3X9S39PKhqz9NX3y1nisanS0L2lr_BuGU-emoQV-YNMPLXaeDhZdSCzodqKBofhl2qHBvYTd2GJoqbuK5mi9qTvqMDjG-trXfedOyVFpGodnv7kkL3e3z6t1tHm8f1jdbKKcqXSK4oxLnmEhCmDSCKVUknKRbEvFUIptwRUXIDAvkzQuDUOelEUMLFdcosAC4iW5mHsH27-P6Lze9aPtwkvNExlLBQpEoPhM5bZ3zmKpB1u3xk6agd7Pq-d5dZhX_8yrpyDFs-QC3FVo_6r_sb4BX_R_sA</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Carl, Merlin</creator><creator>Schmitz, Michael</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201001</creationdate><title>How to grow it? Strategies of mathematical development presented by the example of enumerating certain set partitions</title><author>Carl, Merlin ; Schmitz, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c185y-392729ed6d017a688845264bf81e76bd282606ecf453fa1e24fd301c827e6ed03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Combinatorial analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematik in der Lehre</topic><topic>Partitions (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carl, Merlin</creatorcontrib><creatorcontrib>Schmitz, Michael</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Semesterberichte</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carl, Merlin</au><au>Schmitz, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to grow it? Strategies of mathematical development presented by the example of enumerating certain set partitions</atitle><jtitle>Mathematische Semesterberichte</jtitle><stitle>Math Semesterber</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>67</volume><issue>2</issue><spage>237</spage><epage>261</epage><pages>237-261</pages><issn>0720-728X</issn><eissn>1432-1815</eissn><abstract>We describe in the form of a dialogue a development of various reflections on the combinatorics of set partitions; among the topics we pursue are the number of ways of partitioning a finite set into a fixed number
d
of subsets of odd or even size, into
a
parts of odd and
b
parts of even size, and into
d
parts, each of which has a size in a certain congruence class modulo some natural number
m
. To this end, pattern guessing, recursion and induction, combinatorial interpretation and generating functions are employed. The participants of the dialogue represent different perspectives on and approaches to mathematics.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00591-019-00267-y</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0720-728X |
ispartof | Mathematische Semesterberichte, 2020-10, Vol.67 (2), p.237-261 |
issn | 0720-728X 1432-1815 |
language | eng |
recordid | cdi_proquest_journals_2473780806 |
source | Springer Link |
subjects | Combinatorial analysis Mathematics Mathematics and Statistics Mathematik in der Lehre Partitions (mathematics) |
title | How to grow it? Strategies of mathematical development presented by the example of enumerating certain set partitions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20grow%20it?%20Strategies%20of%20mathematical%20development%20presented%20by%20the%20example%20of%20enumerating%20certain%20set%20partitions&rft.jtitle=Mathematische%20Semesterberichte&rft.au=Carl,%20Merlin&rft.date=2020-10-01&rft.volume=67&rft.issue=2&rft.spage=237&rft.epage=261&rft.pages=237-261&rft.issn=0720-728X&rft.eissn=1432-1815&rft_id=info:doi/10.1007/s00591-019-00267-y&rft_dat=%3Cproquest_cross%3E2473780806%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c185y-392729ed6d017a688845264bf81e76bd282606ecf453fa1e24fd301c827e6ed03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473780806&rft_id=info:pmid/&rfr_iscdi=true |