Loading…
Assessment and ranking of CMIP5 GCMs performance based on observed statistics over Cauvery river basin – Peninsular India
Assessing information on climate change over a regional scale is made possible through general circulation models (GCMs). However, developers generally have a dilemma in selecting suitable GCM for regional scale downscaling to reduce the computational burden. Ranking of GCMs based on various conditi...
Saved in:
Published in: | Arabian journal of geosciences 2020-11, Vol.13 (22), Article 1200 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Assessing information on climate change over a regional scale is made possible through general circulation models (GCMs). However, developers generally have a dilemma in selecting suitable GCM for regional scale downscaling to reduce the computational burden. Ranking of GCMs based on various conditions will help these purposes, and the present study evaluates the performance of GCMs using various performance evaluation parameters for ranking. Performance of twenty-six Coupled Model Intercomparison Project Phase 5 (CMIP5) GCMs was assessed in the present study to evaluate and rank the predictability of near-surface air temperature (tas) and precipitation (pr). The non-parametric trend existing in observed data from 35 stations is compared with GCM projected trends using Mann-Kendall trend analysis to assess the model reliability. Performance evaluation parameters such as percentage BIAS (PBIAS %), normalized root mean squared error (NRMSE %) and coefficient of determination (
R
2
). Neither of the CMIP5 GCM performed consistently well throughout all four seasons. Also, models performing better in projecting temperature statistics are poor in capturing the precipitation trends and vice versa. The seasonal ranking of GCMs based on their ability to reproduce the regional weather condition would help in selecting suitable GCM for regional climate studies. |
---|---|
ISSN: | 1866-7511 1866-7538 |
DOI: | 10.1007/s12517-020-06217-6 |