Loading…

Existence of Attractors for a Nonlinear Timoshenko System with Delay

This paper deals with Timoshenko’s classic model for beams vibrations. Regarding the linear model of Timoshenko, there are several known results on exponential decay, controllability and numerical approximation, but there are few results that deal with the nonlinear case or even the linear case with...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dynamics and differential equations 2020-12, Vol.32 (4), p.1997-2020
Main Authors: Ramos, Anderson J. A., Santos, Manoel J. Dos, Freitas, Mirelson M., Almeida Júnior, Dilberto S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-cea310bff7dda203ddab39fbe81c91e9e0f5c26252e9c418a891806752353e0b3
cites cdi_FETCH-LOGICAL-c319t-cea310bff7dda203ddab39fbe81c91e9e0f5c26252e9c418a891806752353e0b3
container_end_page 2020
container_issue 4
container_start_page 1997
container_title Journal of dynamics and differential equations
container_volume 32
creator Ramos, Anderson J. A.
Santos, Manoel J. Dos
Freitas, Mirelson M.
Almeida Júnior, Dilberto S.
description This paper deals with Timoshenko’s classic model for beams vibrations. Regarding the linear model of Timoshenko, there are several known results on exponential decay, controllability and numerical approximation, but there are few results that deal with the nonlinear case or even the linear case with delay type damping. In this paper, we will establish the existence of global and exponential attractors for a semilinear Timoshenko system with delay in the rotation angle equation and a friction-type damping in the transverse displacement equation. Since the damping acts on the two equations of the system, we should not assume the well-known velocity equality.
doi_str_mv 10.1007/s10884-019-09799-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473787650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473787650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-cea310bff7dda203ddab39fbe81c91e9e0f5c26252e9c418a891806752353e0b3</originalsourceid><addsrcrecordid>eNp9kE1PAyEQhonRxFr9A55IPKMD7BY4Nm39SBo9WM-EpWC3tksFGu2_F10Tb15m5vA-7yQPQpcUrimAuEkUpKwIUEVACaUIO0IDWgtGFGPsuNxQARFMVafoLKU1ACjJ1QBNZ59tyq6zDgePxzlHY3OICfsQscGPodu0nTMRL9ptSCvXvQX8fCjEFn-0eYWnbmMO5-jEm01yF797iF5uZ4vJPZk_3T1MxnNiOVWZWGc4hcZ7sVwaBrzMhivfOEmtok458LVlI1Yzp2xFpZGKShiJmvGaO2j4EF31vbsY3vcuZb0O-9iVl5pVggspRjWUFOtTNoaUovN6F9utiQdNQX_b0r0tXWzpH1uaFYj3UCrh7tXFv-p_qC8xbGzp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473787650</pqid></control><display><type>article</type><title>Existence of Attractors for a Nonlinear Timoshenko System with Delay</title><source>Springer Nature</source><creator>Ramos, Anderson J. A. ; Santos, Manoel J. Dos ; Freitas, Mirelson M. ; Almeida Júnior, Dilberto S.</creator><creatorcontrib>Ramos, Anderson J. A. ; Santos, Manoel J. Dos ; Freitas, Mirelson M. ; Almeida Júnior, Dilberto S.</creatorcontrib><description>This paper deals with Timoshenko’s classic model for beams vibrations. Regarding the linear model of Timoshenko, there are several known results on exponential decay, controllability and numerical approximation, but there are few results that deal with the nonlinear case or even the linear case with delay type damping. In this paper, we will establish the existence of global and exponential attractors for a semilinear Timoshenko system with delay in the rotation angle equation and a friction-type damping in the transverse displacement equation. Since the damping acts on the two equations of the system, we should not assume the well-known velocity equality.</description><identifier>ISSN: 1040-7294</identifier><identifier>EISSN: 1572-9222</identifier><identifier>DOI: 10.1007/s10884-019-09799-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Controllability ; Damping ; Delay ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations</subject><ispartof>Journal of dynamics and differential equations, 2020-12, Vol.32 (4), p.1997-2020</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-cea310bff7dda203ddab39fbe81c91e9e0f5c26252e9c418a891806752353e0b3</citedby><cites>FETCH-LOGICAL-c319t-cea310bff7dda203ddab39fbe81c91e9e0f5c26252e9c418a891806752353e0b3</cites><orcidid>0000-0002-2803-3248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ramos, Anderson J. A.</creatorcontrib><creatorcontrib>Santos, Manoel J. Dos</creatorcontrib><creatorcontrib>Freitas, Mirelson M.</creatorcontrib><creatorcontrib>Almeida Júnior, Dilberto S.</creatorcontrib><title>Existence of Attractors for a Nonlinear Timoshenko System with Delay</title><title>Journal of dynamics and differential equations</title><addtitle>J Dyn Diff Equat</addtitle><description>This paper deals with Timoshenko’s classic model for beams vibrations. Regarding the linear model of Timoshenko, there are several known results on exponential decay, controllability and numerical approximation, but there are few results that deal with the nonlinear case or even the linear case with delay type damping. In this paper, we will establish the existence of global and exponential attractors for a semilinear Timoshenko system with delay in the rotation angle equation and a friction-type damping in the transverse displacement equation. Since the damping acts on the two equations of the system, we should not assume the well-known velocity equality.</description><subject>Applications of Mathematics</subject><subject>Controllability</subject><subject>Damping</subject><subject>Delay</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><issn>1040-7294</issn><issn>1572-9222</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAyEQhonRxFr9A55IPKMD7BY4Nm39SBo9WM-EpWC3tksFGu2_F10Tb15m5vA-7yQPQpcUrimAuEkUpKwIUEVACaUIO0IDWgtGFGPsuNxQARFMVafoLKU1ACjJ1QBNZ59tyq6zDgePxzlHY3OICfsQscGPodu0nTMRL9ptSCvXvQX8fCjEFn-0eYWnbmMO5-jEm01yF797iF5uZ4vJPZk_3T1MxnNiOVWZWGc4hcZ7sVwaBrzMhivfOEmtok458LVlI1Yzp2xFpZGKShiJmvGaO2j4EF31vbsY3vcuZb0O-9iVl5pVggspRjWUFOtTNoaUovN6F9utiQdNQX_b0r0tXWzpH1uaFYj3UCrh7tXFv-p_qC8xbGzp</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Ramos, Anderson J. A.</creator><creator>Santos, Manoel J. Dos</creator><creator>Freitas, Mirelson M.</creator><creator>Almeida Júnior, Dilberto S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2803-3248</orcidid></search><sort><creationdate>20201201</creationdate><title>Existence of Attractors for a Nonlinear Timoshenko System with Delay</title><author>Ramos, Anderson J. A. ; Santos, Manoel J. Dos ; Freitas, Mirelson M. ; Almeida Júnior, Dilberto S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-cea310bff7dda203ddab39fbe81c91e9e0f5c26252e9c418a891806752353e0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Controllability</topic><topic>Damping</topic><topic>Delay</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos, Anderson J. A.</creatorcontrib><creatorcontrib>Santos, Manoel J. Dos</creatorcontrib><creatorcontrib>Freitas, Mirelson M.</creatorcontrib><creatorcontrib>Almeida Júnior, Dilberto S.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of dynamics and differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos, Anderson J. A.</au><au>Santos, Manoel J. Dos</au><au>Freitas, Mirelson M.</au><au>Almeida Júnior, Dilberto S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of Attractors for a Nonlinear Timoshenko System with Delay</atitle><jtitle>Journal of dynamics and differential equations</jtitle><stitle>J Dyn Diff Equat</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>32</volume><issue>4</issue><spage>1997</spage><epage>2020</epage><pages>1997-2020</pages><issn>1040-7294</issn><eissn>1572-9222</eissn><abstract>This paper deals with Timoshenko’s classic model for beams vibrations. Regarding the linear model of Timoshenko, there are several known results on exponential decay, controllability and numerical approximation, but there are few results that deal with the nonlinear case or even the linear case with delay type damping. In this paper, we will establish the existence of global and exponential attractors for a semilinear Timoshenko system with delay in the rotation angle equation and a friction-type damping in the transverse displacement equation. Since the damping acts on the two equations of the system, we should not assume the well-known velocity equality.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10884-019-09799-2</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-2803-3248</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1040-7294
ispartof Journal of dynamics and differential equations, 2020-12, Vol.32 (4), p.1997-2020
issn 1040-7294
1572-9222
language eng
recordid cdi_proquest_journals_2473787650
source Springer Nature
subjects Applications of Mathematics
Controllability
Damping
Delay
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
title Existence of Attractors for a Nonlinear Timoshenko System with Delay
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A50%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20Attractors%20for%20a%20Nonlinear%20Timoshenko%20System%20with%20Delay&rft.jtitle=Journal%20of%20dynamics%20and%20differential%20equations&rft.au=Ramos,%20Anderson%20J.%20A.&rft.date=2020-12-01&rft.volume=32&rft.issue=4&rft.spage=1997&rft.epage=2020&rft.pages=1997-2020&rft.issn=1040-7294&rft.eissn=1572-9222&rft_id=info:doi/10.1007/s10884-019-09799-2&rft_dat=%3Cproquest_cross%3E2473787650%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-cea310bff7dda203ddab39fbe81c91e9e0f5c26252e9c418a891806752353e0b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473787650&rft_id=info:pmid/&rfr_iscdi=true