Loading…
Existence of Attractors for a Nonlinear Timoshenko System with Delay
This paper deals with Timoshenko’s classic model for beams vibrations. Regarding the linear model of Timoshenko, there are several known results on exponential decay, controllability and numerical approximation, but there are few results that deal with the nonlinear case or even the linear case with...
Saved in:
Published in: | Journal of dynamics and differential equations 2020-12, Vol.32 (4), p.1997-2020 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-cea310bff7dda203ddab39fbe81c91e9e0f5c26252e9c418a891806752353e0b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-cea310bff7dda203ddab39fbe81c91e9e0f5c26252e9c418a891806752353e0b3 |
container_end_page | 2020 |
container_issue | 4 |
container_start_page | 1997 |
container_title | Journal of dynamics and differential equations |
container_volume | 32 |
creator | Ramos, Anderson J. A. Santos, Manoel J. Dos Freitas, Mirelson M. Almeida Júnior, Dilberto S. |
description | This paper deals with Timoshenko’s classic model for beams vibrations. Regarding the linear model of Timoshenko, there are several known results on exponential decay, controllability and numerical approximation, but there are few results that deal with the nonlinear case or even the linear case with delay type damping. In this paper, we will establish the existence of global and exponential attractors for a semilinear Timoshenko system with delay in the rotation angle equation and a friction-type damping in the transverse displacement equation. Since the damping acts on the two equations of the system, we should not assume the well-known velocity equality. |
doi_str_mv | 10.1007/s10884-019-09799-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473787650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473787650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-cea310bff7dda203ddab39fbe81c91e9e0f5c26252e9c418a891806752353e0b3</originalsourceid><addsrcrecordid>eNp9kE1PAyEQhonRxFr9A55IPKMD7BY4Nm39SBo9WM-EpWC3tksFGu2_F10Tb15m5vA-7yQPQpcUrimAuEkUpKwIUEVACaUIO0IDWgtGFGPsuNxQARFMVafoLKU1ACjJ1QBNZ59tyq6zDgePxzlHY3OICfsQscGPodu0nTMRL9ptSCvXvQX8fCjEFn-0eYWnbmMO5-jEm01yF797iF5uZ4vJPZk_3T1MxnNiOVWZWGc4hcZ7sVwaBrzMhivfOEmtok458LVlI1Yzp2xFpZGKShiJmvGaO2j4EF31vbsY3vcuZb0O-9iVl5pVggspRjWUFOtTNoaUovN6F9utiQdNQX_b0r0tXWzpH1uaFYj3UCrh7tXFv-p_qC8xbGzp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473787650</pqid></control><display><type>article</type><title>Existence of Attractors for a Nonlinear Timoshenko System with Delay</title><source>Springer Nature</source><creator>Ramos, Anderson J. A. ; Santos, Manoel J. Dos ; Freitas, Mirelson M. ; Almeida Júnior, Dilberto S.</creator><creatorcontrib>Ramos, Anderson J. A. ; Santos, Manoel J. Dos ; Freitas, Mirelson M. ; Almeida Júnior, Dilberto S.</creatorcontrib><description>This paper deals with Timoshenko’s classic model for beams vibrations. Regarding the linear model of Timoshenko, there are several known results on exponential decay, controllability and numerical approximation, but there are few results that deal with the nonlinear case or even the linear case with delay type damping. In this paper, we will establish the existence of global and exponential attractors for a semilinear Timoshenko system with delay in the rotation angle equation and a friction-type damping in the transverse displacement equation. Since the damping acts on the two equations of the system, we should not assume the well-known velocity equality.</description><identifier>ISSN: 1040-7294</identifier><identifier>EISSN: 1572-9222</identifier><identifier>DOI: 10.1007/s10884-019-09799-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Controllability ; Damping ; Delay ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations</subject><ispartof>Journal of dynamics and differential equations, 2020-12, Vol.32 (4), p.1997-2020</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-cea310bff7dda203ddab39fbe81c91e9e0f5c26252e9c418a891806752353e0b3</citedby><cites>FETCH-LOGICAL-c319t-cea310bff7dda203ddab39fbe81c91e9e0f5c26252e9c418a891806752353e0b3</cites><orcidid>0000-0002-2803-3248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ramos, Anderson J. A.</creatorcontrib><creatorcontrib>Santos, Manoel J. Dos</creatorcontrib><creatorcontrib>Freitas, Mirelson M.</creatorcontrib><creatorcontrib>Almeida Júnior, Dilberto S.</creatorcontrib><title>Existence of Attractors for a Nonlinear Timoshenko System with Delay</title><title>Journal of dynamics and differential equations</title><addtitle>J Dyn Diff Equat</addtitle><description>This paper deals with Timoshenko’s classic model for beams vibrations. Regarding the linear model of Timoshenko, there are several known results on exponential decay, controllability and numerical approximation, but there are few results that deal with the nonlinear case or even the linear case with delay type damping. In this paper, we will establish the existence of global and exponential attractors for a semilinear Timoshenko system with delay in the rotation angle equation and a friction-type damping in the transverse displacement equation. Since the damping acts on the two equations of the system, we should not assume the well-known velocity equality.</description><subject>Applications of Mathematics</subject><subject>Controllability</subject><subject>Damping</subject><subject>Delay</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><issn>1040-7294</issn><issn>1572-9222</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAyEQhonRxFr9A55IPKMD7BY4Nm39SBo9WM-EpWC3tksFGu2_F10Tb15m5vA-7yQPQpcUrimAuEkUpKwIUEVACaUIO0IDWgtGFGPsuNxQARFMVafoLKU1ACjJ1QBNZ59tyq6zDgePxzlHY3OICfsQscGPodu0nTMRL9ptSCvXvQX8fCjEFn-0eYWnbmMO5-jEm01yF797iF5uZ4vJPZk_3T1MxnNiOVWZWGc4hcZ7sVwaBrzMhivfOEmtok458LVlI1Yzp2xFpZGKShiJmvGaO2j4EF31vbsY3vcuZb0O-9iVl5pVggspRjWUFOtTNoaUovN6F9utiQdNQX_b0r0tXWzpH1uaFYj3UCrh7tXFv-p_qC8xbGzp</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Ramos, Anderson J. A.</creator><creator>Santos, Manoel J. Dos</creator><creator>Freitas, Mirelson M.</creator><creator>Almeida Júnior, Dilberto S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2803-3248</orcidid></search><sort><creationdate>20201201</creationdate><title>Existence of Attractors for a Nonlinear Timoshenko System with Delay</title><author>Ramos, Anderson J. A. ; Santos, Manoel J. Dos ; Freitas, Mirelson M. ; Almeida Júnior, Dilberto S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-cea310bff7dda203ddab39fbe81c91e9e0f5c26252e9c418a891806752353e0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Controllability</topic><topic>Damping</topic><topic>Delay</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos, Anderson J. A.</creatorcontrib><creatorcontrib>Santos, Manoel J. Dos</creatorcontrib><creatorcontrib>Freitas, Mirelson M.</creatorcontrib><creatorcontrib>Almeida Júnior, Dilberto S.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of dynamics and differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos, Anderson J. A.</au><au>Santos, Manoel J. Dos</au><au>Freitas, Mirelson M.</au><au>Almeida Júnior, Dilberto S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of Attractors for a Nonlinear Timoshenko System with Delay</atitle><jtitle>Journal of dynamics and differential equations</jtitle><stitle>J Dyn Diff Equat</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>32</volume><issue>4</issue><spage>1997</spage><epage>2020</epage><pages>1997-2020</pages><issn>1040-7294</issn><eissn>1572-9222</eissn><abstract>This paper deals with Timoshenko’s classic model for beams vibrations. Regarding the linear model of Timoshenko, there are several known results on exponential decay, controllability and numerical approximation, but there are few results that deal with the nonlinear case or even the linear case with delay type damping. In this paper, we will establish the existence of global and exponential attractors for a semilinear Timoshenko system with delay in the rotation angle equation and a friction-type damping in the transverse displacement equation. Since the damping acts on the two equations of the system, we should not assume the well-known velocity equality.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10884-019-09799-2</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-2803-3248</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-7294 |
ispartof | Journal of dynamics and differential equations, 2020-12, Vol.32 (4), p.1997-2020 |
issn | 1040-7294 1572-9222 |
language | eng |
recordid | cdi_proquest_journals_2473787650 |
source | Springer Nature |
subjects | Applications of Mathematics Controllability Damping Delay Mathematics Mathematics and Statistics Ordinary Differential Equations Partial Differential Equations |
title | Existence of Attractors for a Nonlinear Timoshenko System with Delay |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A50%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20Attractors%20for%20a%20Nonlinear%20Timoshenko%20System%20with%20Delay&rft.jtitle=Journal%20of%20dynamics%20and%20differential%20equations&rft.au=Ramos,%20Anderson%20J.%20A.&rft.date=2020-12-01&rft.volume=32&rft.issue=4&rft.spage=1997&rft.epage=2020&rft.pages=1997-2020&rft.issn=1040-7294&rft.eissn=1572-9222&rft_id=info:doi/10.1007/s10884-019-09799-2&rft_dat=%3Cproquest_cross%3E2473787650%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-cea310bff7dda203ddab39fbe81c91e9e0f5c26252e9c418a891806752353e0b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473787650&rft_id=info:pmid/&rfr_iscdi=true |