Loading…

Transferrin-Mediated Glioblastoma Cell Targeting of Hexagonal Boron Nitrides

Hexagonal boron nitrides (hBNs) are promising nanomaterials with their high boron content, non-toxic nature in inactive form, high chemical stability, and mechanical strength. However, their hydrophobic nature limits their use in biomedical applications. Therefore, the hBNs have been functionalized...

Full description

Saved in:
Bibliographic Details
Published in:Plasmonics (Norwell, Mass.) Mass.), 2020-12, Vol.15 (6), p.1543-1549
Main Authors: Emanet, Melis, Şen, Özlem, Çulha, Mustafa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hexagonal boron nitrides (hBNs) are promising nanomaterials with their high boron content, non-toxic nature in inactive form, high chemical stability, and mechanical strength. However, their hydrophobic nature limits their use in biomedical applications. Therefore, the hBNs have been functionalized with DSPE-PEG-NH 2 to increase their colloidal stability and circulation time in bloodstream as well as to provide active sites on their surface for further functionalization with tumor-targeting agents. Then, further functionalization of the DSPE-PEG-hBNs with transferrin (TfR) was applied for selective targeting of transferrin receptors overexpressed by brain tumor cells. After that, the cellular interaction and biocompatibility of the structure was investigated on glioblastoma multiforme (U87MG) cancer cells. The cellular investigations showed that transferrin functionalization of the DSPE-PEG-hBNs increased their uptake by glioblastoma cancer cells and decreased cell viability due to the enhanced cellular internalization. Based on the data, the TfR-DSPE-PEG-hBNs are promising agents to evaluate them in drug carrying and targeting applications. Graphical Abstract
ISSN:1557-1955
1557-1963
DOI:10.1007/s11468-020-01206-7