Loading…

The Regularized Visible Fold Revisited

The planar visible fold is a simple singularity in piecewise smooth systems. In this paper, we consider singularly perturbed systems that limit to this piecewise smooth bifurcation as the singular perturbation parameter ϵ → 0 . Alternatively, these singularly perturbed systems can be thought of as r...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nonlinear science 2020-12, Vol.30 (6), p.2463-2511
Main Author: Kristiansen, K. Uldall
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-5a9cc773c7eac5db7d185641a43f00815d7d4635984b5b3e86310c766a39c6713
cites cdi_FETCH-LOGICAL-c319t-5a9cc773c7eac5db7d185641a43f00815d7d4635984b5b3e86310c766a39c6713
container_end_page 2511
container_issue 6
container_start_page 2463
container_title Journal of nonlinear science
container_volume 30
creator Kristiansen, K. Uldall
description The planar visible fold is a simple singularity in piecewise smooth systems. In this paper, we consider singularly perturbed systems that limit to this piecewise smooth bifurcation as the singular perturbation parameter ϵ → 0 . Alternatively, these singularly perturbed systems can be thought of as regularizations of their piecewise counterparts. The main contribution of the paper is to demonstrate the use of consecutive blowup transformations in this setting, allowing us to obtain detailed information about a transition map near the fold under very general assumptions. We apply this information to prove, for the first time, the existence of a locally unique saddle-node bifurcation in the case where a limit cycle, in the singular limit ϵ → 0 , grazes the discontinuity set. We apply this result to a mass-spring system on a moving belt described by a Stribeck-type friction law.
doi_str_mv 10.1007/s00332-020-09627-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473790434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473790434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5a9cc773c7eac5db7d185641a43f00815d7d4635984b5b3e86310c766a39c6713</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFNB8Bad7GQzyVGKVaEgSPUasklat6xdTVpBf73RFbx5Gmbm_YCHsVMBFwKALjMAYsWhAg5GVcT1HhsJWU5CKtpnIzCouTYkD9lRzmsAQTVWI3a-eI6Th7jadS61nzFMntrcNl2czPoulMd7WbcxHLODpetyPPmdY_Y4u15Mb_n8_uZuejXnHoXZ8toZ74nQU3S-Dg0FoWslhZO4BNCiDhSkwtpo2dQNRq1QgCelHBqvSOCYnQ25r6l_28W8tet-lzal0laSkAxIlEVVDSqf-pxTXNrX1L649GEF2G8eduBhCw_7w8PqYsLBlIt4s4rpL_of1xdkqWA2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473790434</pqid></control><display><type>article</type><title>The Regularized Visible Fold Revisited</title><source>Springer Nature</source><creator>Kristiansen, K. Uldall</creator><creatorcontrib>Kristiansen, K. Uldall</creatorcontrib><description>The planar visible fold is a simple singularity in piecewise smooth systems. In this paper, we consider singularly perturbed systems that limit to this piecewise smooth bifurcation as the singular perturbation parameter ϵ → 0 . Alternatively, these singularly perturbed systems can be thought of as regularizations of their piecewise counterparts. The main contribution of the paper is to demonstrate the use of consecutive blowup transformations in this setting, allowing us to obtain detailed information about a transition map near the fold under very general assumptions. We apply this information to prove, for the first time, the existence of a locally unique saddle-node bifurcation in the case where a limit cycle, in the singular limit ϵ → 0 , grazes the discontinuity set. We apply this result to a mass-spring system on a moving belt described by a Stribeck-type friction law.</description><identifier>ISSN: 0938-8974</identifier><identifier>EISSN: 1432-1467</identifier><identifier>DOI: 10.1007/s00332-020-09627-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Belt conveyors ; Bifurcations ; Classical Mechanics ; Economic Theory/Quantitative Economics/Mathematical Methods ; Mass-spring systems ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Singular perturbation ; Theoretical</subject><ispartof>Journal of nonlinear science, 2020-12, Vol.30 (6), p.2463-2511</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5a9cc773c7eac5db7d185641a43f00815d7d4635984b5b3e86310c766a39c6713</citedby><cites>FETCH-LOGICAL-c319t-5a9cc773c7eac5db7d185641a43f00815d7d4635984b5b3e86310c766a39c6713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Kristiansen, K. Uldall</creatorcontrib><title>The Regularized Visible Fold Revisited</title><title>Journal of nonlinear science</title><addtitle>J Nonlinear Sci</addtitle><description>The planar visible fold is a simple singularity in piecewise smooth systems. In this paper, we consider singularly perturbed systems that limit to this piecewise smooth bifurcation as the singular perturbation parameter ϵ → 0 . Alternatively, these singularly perturbed systems can be thought of as regularizations of their piecewise counterparts. The main contribution of the paper is to demonstrate the use of consecutive blowup transformations in this setting, allowing us to obtain detailed information about a transition map near the fold under very general assumptions. We apply this information to prove, for the first time, the existence of a locally unique saddle-node bifurcation in the case where a limit cycle, in the singular limit ϵ → 0 , grazes the discontinuity set. We apply this result to a mass-spring system on a moving belt described by a Stribeck-type friction law.</description><subject>Analysis</subject><subject>Belt conveyors</subject><subject>Bifurcations</subject><subject>Classical Mechanics</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Mass-spring systems</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Singular perturbation</subject><subject>Theoretical</subject><issn>0938-8974</issn><issn>1432-1467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFNB8Bad7GQzyVGKVaEgSPUasklat6xdTVpBf73RFbx5Gmbm_YCHsVMBFwKALjMAYsWhAg5GVcT1HhsJWU5CKtpnIzCouTYkD9lRzmsAQTVWI3a-eI6Th7jadS61nzFMntrcNl2czPoulMd7WbcxHLODpetyPPmdY_Y4u15Mb_n8_uZuejXnHoXZ8toZ74nQU3S-Dg0FoWslhZO4BNCiDhSkwtpo2dQNRq1QgCelHBqvSOCYnQ25r6l_28W8tet-lzal0laSkAxIlEVVDSqf-pxTXNrX1L649GEF2G8eduBhCw_7w8PqYsLBlIt4s4rpL_of1xdkqWA2</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Kristiansen, K. Uldall</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201201</creationdate><title>The Regularized Visible Fold Revisited</title><author>Kristiansen, K. Uldall</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5a9cc773c7eac5db7d185641a43f00815d7d4635984b5b3e86310c766a39c6713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Belt conveyors</topic><topic>Bifurcations</topic><topic>Classical Mechanics</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Mass-spring systems</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Singular perturbation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kristiansen, K. Uldall</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of nonlinear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kristiansen, K. Uldall</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Regularized Visible Fold Revisited</atitle><jtitle>Journal of nonlinear science</jtitle><stitle>J Nonlinear Sci</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>30</volume><issue>6</issue><spage>2463</spage><epage>2511</epage><pages>2463-2511</pages><issn>0938-8974</issn><eissn>1432-1467</eissn><abstract>The planar visible fold is a simple singularity in piecewise smooth systems. In this paper, we consider singularly perturbed systems that limit to this piecewise smooth bifurcation as the singular perturbation parameter ϵ → 0 . Alternatively, these singularly perturbed systems can be thought of as regularizations of their piecewise counterparts. The main contribution of the paper is to demonstrate the use of consecutive blowup transformations in this setting, allowing us to obtain detailed information about a transition map near the fold under very general assumptions. We apply this information to prove, for the first time, the existence of a locally unique saddle-node bifurcation in the case where a limit cycle, in the singular limit ϵ → 0 , grazes the discontinuity set. We apply this result to a mass-spring system on a moving belt described by a Stribeck-type friction law.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00332-020-09627-8</doi><tpages>49</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0938-8974
ispartof Journal of nonlinear science, 2020-12, Vol.30 (6), p.2463-2511
issn 0938-8974
1432-1467
language eng
recordid cdi_proquest_journals_2473790434
source Springer Nature
subjects Analysis
Belt conveyors
Bifurcations
Classical Mechanics
Economic Theory/Quantitative Economics/Mathematical Methods
Mass-spring systems
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Singular perturbation
Theoretical
title The Regularized Visible Fold Revisited
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A47%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Regularized%20Visible%20Fold%20Revisited&rft.jtitle=Journal%20of%20nonlinear%20science&rft.au=Kristiansen,%20K.%20Uldall&rft.date=2020-12-01&rft.volume=30&rft.issue=6&rft.spage=2463&rft.epage=2511&rft.pages=2463-2511&rft.issn=0938-8974&rft.eissn=1432-1467&rft_id=info:doi/10.1007/s00332-020-09627-8&rft_dat=%3Cproquest_cross%3E2473790434%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-5a9cc773c7eac5db7d185641a43f00815d7d4635984b5b3e86310c766a39c6713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473790434&rft_id=info:pmid/&rfr_iscdi=true