Loading…

Enhanced Thermal Oxidation Stability of Jet Fuel by Deoxygenation Treatment

Thermal oxidation stability is an important parameter for jet fuel practical application. In this work, in order to evaluate the influence of deoxygenation on fuel stability, samples of typical fuels (JP-10 and RP-3) were subjected to deoxygenation by nitrogen purge and then subjected to accelerated...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry and technology of fuels and oils 2020-09, Vol.56 (4), p.627-637
Main Authors: Gong, Si, Jia, Tinghao, Pan, Lun, Nie, Genkuo, Zhang, Xiangwen, Wang, Li, Zou, Ji-Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c467t-840cbd3642ab290f1a1ef9f324481e3f88f1718308bdd7ad927d2cb35c9030753
cites cdi_FETCH-LOGICAL-c467t-840cbd3642ab290f1a1ef9f324481e3f88f1718308bdd7ad927d2cb35c9030753
container_end_page 637
container_issue 4
container_start_page 627
container_title Chemistry and technology of fuels and oils
container_volume 56
creator Gong, Si
Jia, Tinghao
Pan, Lun
Nie, Genkuo
Zhang, Xiangwen
Wang, Li
Zou, Ji-Jun
description Thermal oxidation stability is an important parameter for jet fuel practical application. In this work, in order to evaluate the influence of deoxygenation on fuel stability, samples of typical fuels (JP-10 and RP-3) were subjected to deoxygenation by nitrogen purge and then subjected to accelerated thermal oxidation (180°C, 200°C, and 220°C). The parameters of hydroperoxide number, total acid number, size distribution of insoluble oxidation products, and concentration of remaining antioxidant (butylated hydroxytoluene, MIT) were monitored and analyzed. The results show that deoxygenation and thermal oxidation have very little influence on the fuel physical properties (density, net heating value, and kinematic viscosity). However, deoxygenation significantly reduces hydroperoxide number, total acid number, and remaining BHT concentration in the fuel after accelerated oxidation. Moreover, the deoxygenation treatment also inhibits the formation of soluble macromolecular oxidatively reactive species (SMORS) and insoluble oxidation products such as gums and deposits.
doi_str_mv 10.1007/s10553-020-01176-w
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2473813092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A639033796</galeid><sourcerecordid>A639033796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-840cbd3642ab290f1a1ef9f324481e3f88f1718308bdd7ad927d2cb35c9030753</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMouH78AU8Fz9VJ0jbtUVbXT_Dgeg5pOlkjbbomWXb339u1gggiOQwJzzOT4SXkjMIFBRCXgUKe8xQYpECpKNL1HpnQXPC05BT2yQQAqpRDxQ7JUQjvu6tgfEIeb9ybchqbZP6GvlNt8ryxjYq2d8lLVLVtbdwmvUkeMCazFbZJvU2usd9sF-hGbO5RxQ5dPCEHRrUBT7_rMXmd3cynd-nT8-399Oop1VkhYlpmoOuGFxlTNavAUEXRVIazLCspclOWhgpacijrphGqqZhomK55rivgIHJ-TM7Hvkvff6wwRPner7wbRkqWCV7S3Z4_1EK1KK0zffRKdzZoeVXwoRUXVTFQF39Qw2mws7p3aOzw_ktgo6B9H4JHI5fedspvJQW5y0KOWcghC_mVhVwPEh-lMMBugf7nx_9YnxUTikg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473813092</pqid></control><display><type>article</type><title>Enhanced Thermal Oxidation Stability of Jet Fuel by Deoxygenation Treatment</title><source>Springer Nature</source><creator>Gong, Si ; Jia, Tinghao ; Pan, Lun ; Nie, Genkuo ; Zhang, Xiangwen ; Wang, Li ; Zou, Ji-Jun</creator><creatorcontrib>Gong, Si ; Jia, Tinghao ; Pan, Lun ; Nie, Genkuo ; Zhang, Xiangwen ; Wang, Li ; Zou, Ji-Jun</creatorcontrib><description>Thermal oxidation stability is an important parameter for jet fuel practical application. In this work, in order to evaluate the influence of deoxygenation on fuel stability, samples of typical fuels (JP-10 and RP-3) were subjected to deoxygenation by nitrogen purge and then subjected to accelerated thermal oxidation (180°C, 200°C, and 220°C). The parameters of hydroperoxide number, total acid number, size distribution of insoluble oxidation products, and concentration of remaining antioxidant (butylated hydroxytoluene, MIT) were monitored and analyzed. The results show that deoxygenation and thermal oxidation have very little influence on the fuel physical properties (density, net heating value, and kinematic viscosity). However, deoxygenation significantly reduces hydroperoxide number, total acid number, and remaining BHT concentration in the fuel after accelerated oxidation. Moreover, the deoxygenation treatment also inhibits the formation of soluble macromolecular oxidatively reactive species (SMORS) and insoluble oxidation products such as gums and deposits.</description><identifier>ISSN: 0009-3092</identifier><identifier>EISSN: 1573-8310</identifier><identifier>DOI: 10.1007/s10553-020-01176-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Antioxidants ; Calorific value ; Chemistry ; Chemistry and Materials Science ; Deoxygenation ; Fuel and fuel systems ; Geotechnical Engineering &amp; Applied Earth Sciences ; Heat treatment ; Industrial Chemistry/Chemical Engineering ; Jet engine fuels ; Jet planes ; Mineral Resources ; Oxidation ; Oxidation-reduction reaction ; Parameters ; Phenolphthalein ; Physical properties ; Size distribution ; Stability analysis</subject><ispartof>Chemistry and technology of fuels and oils, 2020-09, Vol.56 (4), p.627-637</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-840cbd3642ab290f1a1ef9f324481e3f88f1718308bdd7ad927d2cb35c9030753</citedby><cites>FETCH-LOGICAL-c467t-840cbd3642ab290f1a1ef9f324481e3f88f1718308bdd7ad927d2cb35c9030753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gong, Si</creatorcontrib><creatorcontrib>Jia, Tinghao</creatorcontrib><creatorcontrib>Pan, Lun</creatorcontrib><creatorcontrib>Nie, Genkuo</creatorcontrib><creatorcontrib>Zhang, Xiangwen</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Zou, Ji-Jun</creatorcontrib><title>Enhanced Thermal Oxidation Stability of Jet Fuel by Deoxygenation Treatment</title><title>Chemistry and technology of fuels and oils</title><addtitle>Chem Technol Fuels Oils</addtitle><description>Thermal oxidation stability is an important parameter for jet fuel practical application. In this work, in order to evaluate the influence of deoxygenation on fuel stability, samples of typical fuels (JP-10 and RP-3) were subjected to deoxygenation by nitrogen purge and then subjected to accelerated thermal oxidation (180°C, 200°C, and 220°C). The parameters of hydroperoxide number, total acid number, size distribution of insoluble oxidation products, and concentration of remaining antioxidant (butylated hydroxytoluene, MIT) were monitored and analyzed. The results show that deoxygenation and thermal oxidation have very little influence on the fuel physical properties (density, net heating value, and kinematic viscosity). However, deoxygenation significantly reduces hydroperoxide number, total acid number, and remaining BHT concentration in the fuel after accelerated oxidation. Moreover, the deoxygenation treatment also inhibits the formation of soluble macromolecular oxidatively reactive species (SMORS) and insoluble oxidation products such as gums and deposits.</description><subject>Antioxidants</subject><subject>Calorific value</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Deoxygenation</subject><subject>Fuel and fuel systems</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Heat treatment</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Jet engine fuels</subject><subject>Jet planes</subject><subject>Mineral Resources</subject><subject>Oxidation</subject><subject>Oxidation-reduction reaction</subject><subject>Parameters</subject><subject>Phenolphthalein</subject><subject>Physical properties</subject><subject>Size distribution</subject><subject>Stability analysis</subject><issn>0009-3092</issn><issn>1573-8310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LxDAQhoMouH78AU8Fz9VJ0jbtUVbXT_Dgeg5pOlkjbbomWXb339u1gggiOQwJzzOT4SXkjMIFBRCXgUKe8xQYpECpKNL1HpnQXPC05BT2yQQAqpRDxQ7JUQjvu6tgfEIeb9ybchqbZP6GvlNt8ryxjYq2d8lLVLVtbdwmvUkeMCazFbZJvU2usd9sF-hGbO5RxQ5dPCEHRrUBT7_rMXmd3cynd-nT8-399Oop1VkhYlpmoOuGFxlTNavAUEXRVIazLCspclOWhgpacijrphGqqZhomK55rivgIHJ-TM7Hvkvff6wwRPner7wbRkqWCV7S3Z4_1EK1KK0zffRKdzZoeVXwoRUXVTFQF39Qw2mws7p3aOzw_ktgo6B9H4JHI5fedspvJQW5y0KOWcghC_mVhVwPEh-lMMBugf7nx_9YnxUTikg</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Gong, Si</creator><creator>Jia, Tinghao</creator><creator>Pan, Lun</creator><creator>Nie, Genkuo</creator><creator>Zhang, Xiangwen</creator><creator>Wang, Li</creator><creator>Zou, Ji-Jun</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200901</creationdate><title>Enhanced Thermal Oxidation Stability of Jet Fuel by Deoxygenation Treatment</title><author>Gong, Si ; Jia, Tinghao ; Pan, Lun ; Nie, Genkuo ; Zhang, Xiangwen ; Wang, Li ; Zou, Ji-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-840cbd3642ab290f1a1ef9f324481e3f88f1718308bdd7ad927d2cb35c9030753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antioxidants</topic><topic>Calorific value</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Deoxygenation</topic><topic>Fuel and fuel systems</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Heat treatment</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Jet engine fuels</topic><topic>Jet planes</topic><topic>Mineral Resources</topic><topic>Oxidation</topic><topic>Oxidation-reduction reaction</topic><topic>Parameters</topic><topic>Phenolphthalein</topic><topic>Physical properties</topic><topic>Size distribution</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Si</creatorcontrib><creatorcontrib>Jia, Tinghao</creatorcontrib><creatorcontrib>Pan, Lun</creatorcontrib><creatorcontrib>Nie, Genkuo</creatorcontrib><creatorcontrib>Zhang, Xiangwen</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Zou, Ji-Jun</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry and technology of fuels and oils</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Si</au><au>Jia, Tinghao</au><au>Pan, Lun</au><au>Nie, Genkuo</au><au>Zhang, Xiangwen</au><au>Wang, Li</au><au>Zou, Ji-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Thermal Oxidation Stability of Jet Fuel by Deoxygenation Treatment</atitle><jtitle>Chemistry and technology of fuels and oils</jtitle><stitle>Chem Technol Fuels Oils</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>56</volume><issue>4</issue><spage>627</spage><epage>637</epage><pages>627-637</pages><issn>0009-3092</issn><eissn>1573-8310</eissn><abstract>Thermal oxidation stability is an important parameter for jet fuel practical application. In this work, in order to evaluate the influence of deoxygenation on fuel stability, samples of typical fuels (JP-10 and RP-3) were subjected to deoxygenation by nitrogen purge and then subjected to accelerated thermal oxidation (180°C, 200°C, and 220°C). The parameters of hydroperoxide number, total acid number, size distribution of insoluble oxidation products, and concentration of remaining antioxidant (butylated hydroxytoluene, MIT) were monitored and analyzed. The results show that deoxygenation and thermal oxidation have very little influence on the fuel physical properties (density, net heating value, and kinematic viscosity). However, deoxygenation significantly reduces hydroperoxide number, total acid number, and remaining BHT concentration in the fuel after accelerated oxidation. Moreover, the deoxygenation treatment also inhibits the formation of soluble macromolecular oxidatively reactive species (SMORS) and insoluble oxidation products such as gums and deposits.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10553-020-01176-w</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-3092
ispartof Chemistry and technology of fuels and oils, 2020-09, Vol.56 (4), p.627-637
issn 0009-3092
1573-8310
language eng
recordid cdi_proquest_journals_2473813092
source Springer Nature
subjects Antioxidants
Calorific value
Chemistry
Chemistry and Materials Science
Deoxygenation
Fuel and fuel systems
Geotechnical Engineering & Applied Earth Sciences
Heat treatment
Industrial Chemistry/Chemical Engineering
Jet engine fuels
Jet planes
Mineral Resources
Oxidation
Oxidation-reduction reaction
Parameters
Phenolphthalein
Physical properties
Size distribution
Stability analysis
title Enhanced Thermal Oxidation Stability of Jet Fuel by Deoxygenation Treatment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A11%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Thermal%20Oxidation%20Stability%20of%20Jet%20Fuel%20by%20Deoxygenation%20Treatment&rft.jtitle=Chemistry%20and%20technology%20of%20fuels%20and%20oils&rft.au=Gong,%20Si&rft.date=2020-09-01&rft.volume=56&rft.issue=4&rft.spage=627&rft.epage=637&rft.pages=627-637&rft.issn=0009-3092&rft.eissn=1573-8310&rft_id=info:doi/10.1007/s10553-020-01176-w&rft_dat=%3Cgale_proqu%3EA639033796%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c467t-840cbd3642ab290f1a1ef9f324481e3f88f1718308bdd7ad927d2cb35c9030753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473813092&rft_id=info:pmid/&rft_galeid=A639033796&rfr_iscdi=true