Loading…
Thermal expansion of solids: review on theories
The coefficient of thermal expansion of a solid can be derived from (1) anharmonicity of atomic vibrations; (2) lattice dynamics; (3) equation of state by G. Mie; (4) equation of state by E. Grüneisen; and (6) potential of interatomic interaction. Only the last theory in this list provides us with t...
Saved in:
Published in: | Journal of thermal analysis and calorimetry 2020-10, Vol.142 (2), p.1097-1113 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The coefficient of thermal expansion of a solid can be derived from (1) anharmonicity of atomic vibrations; (2) lattice dynamics; (3) equation of state by G. Mie; (4) equation of state by E. Grüneisen; and (6) potential of interatomic interaction. Only the last theory in this list provides us with the equation describing correctly all features in the thermal expansion: (1) proportionality between thermal expansion and heat capacity; (2) various values of “plateau” for the coefficient of thermal expansion at temperatures close to Debye temperature; and (3) acceleration of the thermal expansion in the vicinity of melting point. |
---|---|
ISSN: | 1388-6150 1588-2926 |
DOI: | 10.1007/s10973-020-09370-y |