Loading…
Quantifying non-centrosymmetric orthorhombic phase fraction in 10 nm ferroelectric Hf0.5Zr0.5O2 films
In this Letter, we report the percentage of the ferroelectric phase in a 10-nm-thick Hf0.5Zr0.5O2 (HZO) film deposited in a metal-insulator-metal stack by atomic layer deposition. The ferroelectric behavior was confirmed by polarization measurements and piezoresponse force microscopy. Ferroelectric...
Saved in:
Published in: | Applied physics letters 2020-12, Vol.117 (26) |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c172f-7805886c4b7ca839b5e74760e9d58a8b1001e155c17ad0ffc223dbee43af93643 |
---|---|
cites | cdi_FETCH-LOGICAL-c172f-7805886c4b7ca839b5e74760e9d58a8b1001e155c17ad0ffc223dbee43af93643 |
container_end_page | |
container_issue | 26 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 117 |
creator | Mukundan, Vineetha Consiglio, Steven Triyoso, Dina H. Tapily, Kandabara Schujman, Sandra Mart, Clemens Kämpfe, Thomas Weinreich, Wenke Jordan-Sweet, Jean Clark, Robert D. Leusink, Gert J. Diebold, Alain C. |
description | In this Letter, we report the percentage of the ferroelectric phase in a 10-nm-thick Hf0.5Zr0.5O2 (HZO) film deposited in a metal-insulator-metal stack by atomic layer deposition. The ferroelectric behavior was confirmed by polarization measurements and piezoresponse force microscopy. Ferroelectric behavior in this material has been attributed most likely to the formation of the polar non-centrosymmetric orthorhombic phase [Müller et al., Appl. Phys. Lett. 99, 102903 (2011)], which is difficult to distinguish from the tetragonal phase in x-ray diffraction due to peak overlap. Using a model for each of the crystal phases of hafnia-zirconia, the phase percentages were estimated using a Rietveld refinement method applied to grazing incidence x-ray diffraction data and a linear combination fit analysis procedure [McBriarty et al., Phys. Status Solidi 257, 1900285 (2020)] applied to grazing incidence extended x-ray absorption fine structure data. Using these methods, it was found that the tetragonal (P42/nmc) phase is the most prevalent at 48–60% followed by the polar non-centrosymmetric orthorhombic (Pca21) phase at 35%–40% with the remainder consisting of the monoclinic (P21/c) phase. Understanding the details of the effect of the phase structure on the electrical properties of these materials is extremely important for device engineering of HZO for logic and emerging nonvolatile memory applications. |
doi_str_mv | 10.1063/5.0029611 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2473866779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473866779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c172f-7805886c4b7ca839b5e74760e9d58a8b1001e155c17ad0ffc223dbee43af93643</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsL32DAlcLUZDL5maUUtUKhCLpxEzKZpE3pJGMyFbpz62v6JKa26EJwcy8Hvnsu5wBwjuAIQYqvyQjCoqIIHYABgozlGCF-CAYQQpzTiqBjcBLjMklSYDwA88e1dL01G-vmmfMuV9r1wcdN2-o-WJX50C98WPi2TqJbyKgzE6TqrXeZdRmCn-8frs2MDsHrlVbfRxMDR-QlpDErMmNXbTwFR0auoj7b7yF4vrt9Gk_y6ez-YXwzzRVihckZh4RzqsqaKclxVRPNSkahrhrCJa8RhEgjQhItG2iMKgrc1FqXWJoK0xIPwcXOtwv-da1jL5Z-HVx6KYqSYU4pY1WiLneUSlFj0EZ0wbYybASCYtujIGLfY2KvdmxUtpfb3D_wmw-_oOga8x_81_kLCYuBYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473866779</pqid></control><display><type>article</type><title>Quantifying non-centrosymmetric orthorhombic phase fraction in 10 nm ferroelectric Hf0.5Zr0.5O2 films</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Mukundan, Vineetha ; Consiglio, Steven ; Triyoso, Dina H. ; Tapily, Kandabara ; Schujman, Sandra ; Mart, Clemens ; Kämpfe, Thomas ; Weinreich, Wenke ; Jordan-Sweet, Jean ; Clark, Robert D. ; Leusink, Gert J. ; Diebold, Alain C.</creator><creatorcontrib>Mukundan, Vineetha ; Consiglio, Steven ; Triyoso, Dina H. ; Tapily, Kandabara ; Schujman, Sandra ; Mart, Clemens ; Kämpfe, Thomas ; Weinreich, Wenke ; Jordan-Sweet, Jean ; Clark, Robert D. ; Leusink, Gert J. ; Diebold, Alain C.</creatorcontrib><description>In this Letter, we report the percentage of the ferroelectric phase in a 10-nm-thick Hf0.5Zr0.5O2 (HZO) film deposited in a metal-insulator-metal stack by atomic layer deposition. The ferroelectric behavior was confirmed by polarization measurements and piezoresponse force microscopy. Ferroelectric behavior in this material has been attributed most likely to the formation of the polar non-centrosymmetric orthorhombic phase [Müller et al., Appl. Phys. Lett. 99, 102903 (2011)], which is difficult to distinguish from the tetragonal phase in x-ray diffraction due to peak overlap. Using a model for each of the crystal phases of hafnia-zirconia, the phase percentages were estimated using a Rietveld refinement method applied to grazing incidence x-ray diffraction data and a linear combination fit analysis procedure [McBriarty et al., Phys. Status Solidi 257, 1900285 (2020)] applied to grazing incidence extended x-ray absorption fine structure data. Using these methods, it was found that the tetragonal (P42/nmc) phase is the most prevalent at 48–60% followed by the polar non-centrosymmetric orthorhombic (Pca21) phase at 35%–40% with the remainder consisting of the monoclinic (P21/c) phase. Understanding the details of the effect of the phase structure on the electrical properties of these materials is extremely important for device engineering of HZO for logic and emerging nonvolatile memory applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0029611</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Atomic layer epitaxy ; Electrical properties ; Ferroelectric materials ; Ferroelectricity ; Fine structure ; Grazing incidence ; Hafnium oxide ; Insulators ; Orthorhombic phase ; Rietveld method ; Solid phases ; X ray absorption ; X-ray diffraction ; Zirconium dioxide</subject><ispartof>Applied physics letters, 2020-12, Vol.117 (26)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c172f-7805886c4b7ca839b5e74760e9d58a8b1001e155c17ad0ffc223dbee43af93643</citedby><cites>FETCH-LOGICAL-c172f-7805886c4b7ca839b5e74760e9d58a8b1001e155c17ad0ffc223dbee43af93643</cites><orcidid>0000-0002-6186-2961 ; 0000-0002-4672-8676 ; 0000-0002-2755-2556 ; 0000-0001-8543-5879 ; 0000-0002-8090-1049 ; 0000-0001-5034-4272 ; 0000-0002-1828-2187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0029611$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Mukundan, Vineetha</creatorcontrib><creatorcontrib>Consiglio, Steven</creatorcontrib><creatorcontrib>Triyoso, Dina H.</creatorcontrib><creatorcontrib>Tapily, Kandabara</creatorcontrib><creatorcontrib>Schujman, Sandra</creatorcontrib><creatorcontrib>Mart, Clemens</creatorcontrib><creatorcontrib>Kämpfe, Thomas</creatorcontrib><creatorcontrib>Weinreich, Wenke</creatorcontrib><creatorcontrib>Jordan-Sweet, Jean</creatorcontrib><creatorcontrib>Clark, Robert D.</creatorcontrib><creatorcontrib>Leusink, Gert J.</creatorcontrib><creatorcontrib>Diebold, Alain C.</creatorcontrib><title>Quantifying non-centrosymmetric orthorhombic phase fraction in 10 nm ferroelectric Hf0.5Zr0.5O2 films</title><title>Applied physics letters</title><description>In this Letter, we report the percentage of the ferroelectric phase in a 10-nm-thick Hf0.5Zr0.5O2 (HZO) film deposited in a metal-insulator-metal stack by atomic layer deposition. The ferroelectric behavior was confirmed by polarization measurements and piezoresponse force microscopy. Ferroelectric behavior in this material has been attributed most likely to the formation of the polar non-centrosymmetric orthorhombic phase [Müller et al., Appl. Phys. Lett. 99, 102903 (2011)], which is difficult to distinguish from the tetragonal phase in x-ray diffraction due to peak overlap. Using a model for each of the crystal phases of hafnia-zirconia, the phase percentages were estimated using a Rietveld refinement method applied to grazing incidence x-ray diffraction data and a linear combination fit analysis procedure [McBriarty et al., Phys. Status Solidi 257, 1900285 (2020)] applied to grazing incidence extended x-ray absorption fine structure data. Using these methods, it was found that the tetragonal (P42/nmc) phase is the most prevalent at 48–60% followed by the polar non-centrosymmetric orthorhombic (Pca21) phase at 35%–40% with the remainder consisting of the monoclinic (P21/c) phase. Understanding the details of the effect of the phase structure on the electrical properties of these materials is extremely important for device engineering of HZO for logic and emerging nonvolatile memory applications.</description><subject>Applied physics</subject><subject>Atomic layer epitaxy</subject><subject>Electrical properties</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Fine structure</subject><subject>Grazing incidence</subject><subject>Hafnium oxide</subject><subject>Insulators</subject><subject>Orthorhombic phase</subject><subject>Rietveld method</subject><subject>Solid phases</subject><subject>X ray absorption</subject><subject>X-ray diffraction</subject><subject>Zirconium dioxide</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsL32DAlcLUZDL5maUUtUKhCLpxEzKZpE3pJGMyFbpz62v6JKa26EJwcy8Hvnsu5wBwjuAIQYqvyQjCoqIIHYABgozlGCF-CAYQQpzTiqBjcBLjMklSYDwA88e1dL01G-vmmfMuV9r1wcdN2-o-WJX50C98WPi2TqJbyKgzE6TqrXeZdRmCn-8frs2MDsHrlVbfRxMDR-QlpDErMmNXbTwFR0auoj7b7yF4vrt9Gk_y6ez-YXwzzRVihckZh4RzqsqaKclxVRPNSkahrhrCJa8RhEgjQhItG2iMKgrc1FqXWJoK0xIPwcXOtwv-da1jL5Z-HVx6KYqSYU4pY1WiLneUSlFj0EZ0wbYybASCYtujIGLfY2KvdmxUtpfb3D_wmw-_oOga8x_81_kLCYuBYg</recordid><startdate>20201228</startdate><enddate>20201228</enddate><creator>Mukundan, Vineetha</creator><creator>Consiglio, Steven</creator><creator>Triyoso, Dina H.</creator><creator>Tapily, Kandabara</creator><creator>Schujman, Sandra</creator><creator>Mart, Clemens</creator><creator>Kämpfe, Thomas</creator><creator>Weinreich, Wenke</creator><creator>Jordan-Sweet, Jean</creator><creator>Clark, Robert D.</creator><creator>Leusink, Gert J.</creator><creator>Diebold, Alain C.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6186-2961</orcidid><orcidid>https://orcid.org/0000-0002-4672-8676</orcidid><orcidid>https://orcid.org/0000-0002-2755-2556</orcidid><orcidid>https://orcid.org/0000-0001-8543-5879</orcidid><orcidid>https://orcid.org/0000-0002-8090-1049</orcidid><orcidid>https://orcid.org/0000-0001-5034-4272</orcidid><orcidid>https://orcid.org/0000-0002-1828-2187</orcidid></search><sort><creationdate>20201228</creationdate><title>Quantifying non-centrosymmetric orthorhombic phase fraction in 10 nm ferroelectric Hf0.5Zr0.5O2 films</title><author>Mukundan, Vineetha ; Consiglio, Steven ; Triyoso, Dina H. ; Tapily, Kandabara ; Schujman, Sandra ; Mart, Clemens ; Kämpfe, Thomas ; Weinreich, Wenke ; Jordan-Sweet, Jean ; Clark, Robert D. ; Leusink, Gert J. ; Diebold, Alain C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c172f-7805886c4b7ca839b5e74760e9d58a8b1001e155c17ad0ffc223dbee43af93643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Atomic layer epitaxy</topic><topic>Electrical properties</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Fine structure</topic><topic>Grazing incidence</topic><topic>Hafnium oxide</topic><topic>Insulators</topic><topic>Orthorhombic phase</topic><topic>Rietveld method</topic><topic>Solid phases</topic><topic>X ray absorption</topic><topic>X-ray diffraction</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukundan, Vineetha</creatorcontrib><creatorcontrib>Consiglio, Steven</creatorcontrib><creatorcontrib>Triyoso, Dina H.</creatorcontrib><creatorcontrib>Tapily, Kandabara</creatorcontrib><creatorcontrib>Schujman, Sandra</creatorcontrib><creatorcontrib>Mart, Clemens</creatorcontrib><creatorcontrib>Kämpfe, Thomas</creatorcontrib><creatorcontrib>Weinreich, Wenke</creatorcontrib><creatorcontrib>Jordan-Sweet, Jean</creatorcontrib><creatorcontrib>Clark, Robert D.</creatorcontrib><creatorcontrib>Leusink, Gert J.</creatorcontrib><creatorcontrib>Diebold, Alain C.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukundan, Vineetha</au><au>Consiglio, Steven</au><au>Triyoso, Dina H.</au><au>Tapily, Kandabara</au><au>Schujman, Sandra</au><au>Mart, Clemens</au><au>Kämpfe, Thomas</au><au>Weinreich, Wenke</au><au>Jordan-Sweet, Jean</au><au>Clark, Robert D.</au><au>Leusink, Gert J.</au><au>Diebold, Alain C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying non-centrosymmetric orthorhombic phase fraction in 10 nm ferroelectric Hf0.5Zr0.5O2 films</atitle><jtitle>Applied physics letters</jtitle><date>2020-12-28</date><risdate>2020</risdate><volume>117</volume><issue>26</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>In this Letter, we report the percentage of the ferroelectric phase in a 10-nm-thick Hf0.5Zr0.5O2 (HZO) film deposited in a metal-insulator-metal stack by atomic layer deposition. The ferroelectric behavior was confirmed by polarization measurements and piezoresponse force microscopy. Ferroelectric behavior in this material has been attributed most likely to the formation of the polar non-centrosymmetric orthorhombic phase [Müller et al., Appl. Phys. Lett. 99, 102903 (2011)], which is difficult to distinguish from the tetragonal phase in x-ray diffraction due to peak overlap. Using a model for each of the crystal phases of hafnia-zirconia, the phase percentages were estimated using a Rietveld refinement method applied to grazing incidence x-ray diffraction data and a linear combination fit analysis procedure [McBriarty et al., Phys. Status Solidi 257, 1900285 (2020)] applied to grazing incidence extended x-ray absorption fine structure data. Using these methods, it was found that the tetragonal (P42/nmc) phase is the most prevalent at 48–60% followed by the polar non-centrosymmetric orthorhombic (Pca21) phase at 35%–40% with the remainder consisting of the monoclinic (P21/c) phase. Understanding the details of the effect of the phase structure on the electrical properties of these materials is extremely important for device engineering of HZO for logic and emerging nonvolatile memory applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0029611</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6186-2961</orcidid><orcidid>https://orcid.org/0000-0002-4672-8676</orcidid><orcidid>https://orcid.org/0000-0002-2755-2556</orcidid><orcidid>https://orcid.org/0000-0001-8543-5879</orcidid><orcidid>https://orcid.org/0000-0002-8090-1049</orcidid><orcidid>https://orcid.org/0000-0001-5034-4272</orcidid><orcidid>https://orcid.org/0000-0002-1828-2187</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2020-12, Vol.117 (26) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2473866779 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建) |
subjects | Applied physics Atomic layer epitaxy Electrical properties Ferroelectric materials Ferroelectricity Fine structure Grazing incidence Hafnium oxide Insulators Orthorhombic phase Rietveld method Solid phases X ray absorption X-ray diffraction Zirconium dioxide |
title | Quantifying non-centrosymmetric orthorhombic phase fraction in 10 nm ferroelectric Hf0.5Zr0.5O2 films |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20non-centrosymmetric%20orthorhombic%20phase%20fraction%20in%2010%E2%80%89nm%20ferroelectric%20Hf0.5Zr0.5O2%20films&rft.jtitle=Applied%20physics%20letters&rft.au=Mukundan,%20Vineetha&rft.date=2020-12-28&rft.volume=117&rft.issue=26&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0029611&rft_dat=%3Cproquest_scita%3E2473866779%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c172f-7805886c4b7ca839b5e74760e9d58a8b1001e155c17ad0ffc223dbee43af93643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473866779&rft_id=info:pmid/&rfr_iscdi=true |