Loading…

Quantifying non-centrosymmetric orthorhombic phase fraction in 10 nm ferroelectric Hf0.5Zr0.5O2 films

In this Letter, we report the percentage of the ferroelectric phase in a 10-nm-thick Hf0.5Zr0.5O2 (HZO) film deposited in a metal-insulator-metal stack by atomic layer deposition. The ferroelectric behavior was confirmed by polarization measurements and piezoresponse force microscopy. Ferroelectric...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2020-12, Vol.117 (26)
Main Authors: Mukundan, Vineetha, Consiglio, Steven, Triyoso, Dina H., Tapily, Kandabara, Schujman, Sandra, Mart, Clemens, Kämpfe, Thomas, Weinreich, Wenke, Jordan-Sweet, Jean, Clark, Robert D., Leusink, Gert J., Diebold, Alain C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c172f-7805886c4b7ca839b5e74760e9d58a8b1001e155c17ad0ffc223dbee43af93643
cites cdi_FETCH-LOGICAL-c172f-7805886c4b7ca839b5e74760e9d58a8b1001e155c17ad0ffc223dbee43af93643
container_end_page
container_issue 26
container_start_page
container_title Applied physics letters
container_volume 117
creator Mukundan, Vineetha
Consiglio, Steven
Triyoso, Dina H.
Tapily, Kandabara
Schujman, Sandra
Mart, Clemens
Kämpfe, Thomas
Weinreich, Wenke
Jordan-Sweet, Jean
Clark, Robert D.
Leusink, Gert J.
Diebold, Alain C.
description In this Letter, we report the percentage of the ferroelectric phase in a 10-nm-thick Hf0.5Zr0.5O2 (HZO) film deposited in a metal-insulator-metal stack by atomic layer deposition. The ferroelectric behavior was confirmed by polarization measurements and piezoresponse force microscopy. Ferroelectric behavior in this material has been attributed most likely to the formation of the polar non-centrosymmetric orthorhombic phase [Müller et al., Appl. Phys. Lett. 99, 102903 (2011)], which is difficult to distinguish from the tetragonal phase in x-ray diffraction due to peak overlap. Using a model for each of the crystal phases of hafnia-zirconia, the phase percentages were estimated using a Rietveld refinement method applied to grazing incidence x-ray diffraction data and a linear combination fit analysis procedure [McBriarty et al., Phys. Status Solidi 257, 1900285 (2020)] applied to grazing incidence extended x-ray absorption fine structure data. Using these methods, it was found that the tetragonal (P42/nmc) phase is the most prevalent at 48–60% followed by the polar non-centrosymmetric orthorhombic (Pca21) phase at 35%–40% with the remainder consisting of the monoclinic (P21/c) phase. Understanding the details of the effect of the phase structure on the electrical properties of these materials is extremely important for device engineering of HZO for logic and emerging nonvolatile memory applications.
doi_str_mv 10.1063/5.0029611
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2473866779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473866779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c172f-7805886c4b7ca839b5e74760e9d58a8b1001e155c17ad0ffc223dbee43af93643</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsL32DAlcLUZDL5maUUtUKhCLpxEzKZpE3pJGMyFbpz62v6JKa26EJwcy8Hvnsu5wBwjuAIQYqvyQjCoqIIHYABgozlGCF-CAYQQpzTiqBjcBLjMklSYDwA88e1dL01G-vmmfMuV9r1wcdN2-o-WJX50C98WPi2TqJbyKgzE6TqrXeZdRmCn-8frs2MDsHrlVbfRxMDR-QlpDErMmNXbTwFR0auoj7b7yF4vrt9Gk_y6ez-YXwzzRVihckZh4RzqsqaKclxVRPNSkahrhrCJa8RhEgjQhItG2iMKgrc1FqXWJoK0xIPwcXOtwv-da1jL5Z-HVx6KYqSYU4pY1WiLneUSlFj0EZ0wbYybASCYtujIGLfY2KvdmxUtpfb3D_wmw-_oOga8x_81_kLCYuBYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473866779</pqid></control><display><type>article</type><title>Quantifying non-centrosymmetric orthorhombic phase fraction in 10 nm ferroelectric Hf0.5Zr0.5O2 films</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Mukundan, Vineetha ; Consiglio, Steven ; Triyoso, Dina H. ; Tapily, Kandabara ; Schujman, Sandra ; Mart, Clemens ; Kämpfe, Thomas ; Weinreich, Wenke ; Jordan-Sweet, Jean ; Clark, Robert D. ; Leusink, Gert J. ; Diebold, Alain C.</creator><creatorcontrib>Mukundan, Vineetha ; Consiglio, Steven ; Triyoso, Dina H. ; Tapily, Kandabara ; Schujman, Sandra ; Mart, Clemens ; Kämpfe, Thomas ; Weinreich, Wenke ; Jordan-Sweet, Jean ; Clark, Robert D. ; Leusink, Gert J. ; Diebold, Alain C.</creatorcontrib><description>In this Letter, we report the percentage of the ferroelectric phase in a 10-nm-thick Hf0.5Zr0.5O2 (HZO) film deposited in a metal-insulator-metal stack by atomic layer deposition. The ferroelectric behavior was confirmed by polarization measurements and piezoresponse force microscopy. Ferroelectric behavior in this material has been attributed most likely to the formation of the polar non-centrosymmetric orthorhombic phase [Müller et al., Appl. Phys. Lett. 99, 102903 (2011)], which is difficult to distinguish from the tetragonal phase in x-ray diffraction due to peak overlap. Using a model for each of the crystal phases of hafnia-zirconia, the phase percentages were estimated using a Rietveld refinement method applied to grazing incidence x-ray diffraction data and a linear combination fit analysis procedure [McBriarty et al., Phys. Status Solidi 257, 1900285 (2020)] applied to grazing incidence extended x-ray absorption fine structure data. Using these methods, it was found that the tetragonal (P42/nmc) phase is the most prevalent at 48–60% followed by the polar non-centrosymmetric orthorhombic (Pca21) phase at 35%–40% with the remainder consisting of the monoclinic (P21/c) phase. Understanding the details of the effect of the phase structure on the electrical properties of these materials is extremely important for device engineering of HZO for logic and emerging nonvolatile memory applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0029611</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Atomic layer epitaxy ; Electrical properties ; Ferroelectric materials ; Ferroelectricity ; Fine structure ; Grazing incidence ; Hafnium oxide ; Insulators ; Orthorhombic phase ; Rietveld method ; Solid phases ; X ray absorption ; X-ray diffraction ; Zirconium dioxide</subject><ispartof>Applied physics letters, 2020-12, Vol.117 (26)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c172f-7805886c4b7ca839b5e74760e9d58a8b1001e155c17ad0ffc223dbee43af93643</citedby><cites>FETCH-LOGICAL-c172f-7805886c4b7ca839b5e74760e9d58a8b1001e155c17ad0ffc223dbee43af93643</cites><orcidid>0000-0002-6186-2961 ; 0000-0002-4672-8676 ; 0000-0002-2755-2556 ; 0000-0001-8543-5879 ; 0000-0002-8090-1049 ; 0000-0001-5034-4272 ; 0000-0002-1828-2187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0029611$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Mukundan, Vineetha</creatorcontrib><creatorcontrib>Consiglio, Steven</creatorcontrib><creatorcontrib>Triyoso, Dina H.</creatorcontrib><creatorcontrib>Tapily, Kandabara</creatorcontrib><creatorcontrib>Schujman, Sandra</creatorcontrib><creatorcontrib>Mart, Clemens</creatorcontrib><creatorcontrib>Kämpfe, Thomas</creatorcontrib><creatorcontrib>Weinreich, Wenke</creatorcontrib><creatorcontrib>Jordan-Sweet, Jean</creatorcontrib><creatorcontrib>Clark, Robert D.</creatorcontrib><creatorcontrib>Leusink, Gert J.</creatorcontrib><creatorcontrib>Diebold, Alain C.</creatorcontrib><title>Quantifying non-centrosymmetric orthorhombic phase fraction in 10 nm ferroelectric Hf0.5Zr0.5O2 films</title><title>Applied physics letters</title><description>In this Letter, we report the percentage of the ferroelectric phase in a 10-nm-thick Hf0.5Zr0.5O2 (HZO) film deposited in a metal-insulator-metal stack by atomic layer deposition. The ferroelectric behavior was confirmed by polarization measurements and piezoresponse force microscopy. Ferroelectric behavior in this material has been attributed most likely to the formation of the polar non-centrosymmetric orthorhombic phase [Müller et al., Appl. Phys. Lett. 99, 102903 (2011)], which is difficult to distinguish from the tetragonal phase in x-ray diffraction due to peak overlap. Using a model for each of the crystal phases of hafnia-zirconia, the phase percentages were estimated using a Rietveld refinement method applied to grazing incidence x-ray diffraction data and a linear combination fit analysis procedure [McBriarty et al., Phys. Status Solidi 257, 1900285 (2020)] applied to grazing incidence extended x-ray absorption fine structure data. Using these methods, it was found that the tetragonal (P42/nmc) phase is the most prevalent at 48–60% followed by the polar non-centrosymmetric orthorhombic (Pca21) phase at 35%–40% with the remainder consisting of the monoclinic (P21/c) phase. Understanding the details of the effect of the phase structure on the electrical properties of these materials is extremely important for device engineering of HZO for logic and emerging nonvolatile memory applications.</description><subject>Applied physics</subject><subject>Atomic layer epitaxy</subject><subject>Electrical properties</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Fine structure</subject><subject>Grazing incidence</subject><subject>Hafnium oxide</subject><subject>Insulators</subject><subject>Orthorhombic phase</subject><subject>Rietveld method</subject><subject>Solid phases</subject><subject>X ray absorption</subject><subject>X-ray diffraction</subject><subject>Zirconium dioxide</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsL32DAlcLUZDL5maUUtUKhCLpxEzKZpE3pJGMyFbpz62v6JKa26EJwcy8Hvnsu5wBwjuAIQYqvyQjCoqIIHYABgozlGCF-CAYQQpzTiqBjcBLjMklSYDwA88e1dL01G-vmmfMuV9r1wcdN2-o-WJX50C98WPi2TqJbyKgzE6TqrXeZdRmCn-8frs2MDsHrlVbfRxMDR-QlpDErMmNXbTwFR0auoj7b7yF4vrt9Gk_y6ez-YXwzzRVihckZh4RzqsqaKclxVRPNSkahrhrCJa8RhEgjQhItG2iMKgrc1FqXWJoK0xIPwcXOtwv-da1jL5Z-HVx6KYqSYU4pY1WiLneUSlFj0EZ0wbYybASCYtujIGLfY2KvdmxUtpfb3D_wmw-_oOga8x_81_kLCYuBYg</recordid><startdate>20201228</startdate><enddate>20201228</enddate><creator>Mukundan, Vineetha</creator><creator>Consiglio, Steven</creator><creator>Triyoso, Dina H.</creator><creator>Tapily, Kandabara</creator><creator>Schujman, Sandra</creator><creator>Mart, Clemens</creator><creator>Kämpfe, Thomas</creator><creator>Weinreich, Wenke</creator><creator>Jordan-Sweet, Jean</creator><creator>Clark, Robert D.</creator><creator>Leusink, Gert J.</creator><creator>Diebold, Alain C.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6186-2961</orcidid><orcidid>https://orcid.org/0000-0002-4672-8676</orcidid><orcidid>https://orcid.org/0000-0002-2755-2556</orcidid><orcidid>https://orcid.org/0000-0001-8543-5879</orcidid><orcidid>https://orcid.org/0000-0002-8090-1049</orcidid><orcidid>https://orcid.org/0000-0001-5034-4272</orcidid><orcidid>https://orcid.org/0000-0002-1828-2187</orcidid></search><sort><creationdate>20201228</creationdate><title>Quantifying non-centrosymmetric orthorhombic phase fraction in 10 nm ferroelectric Hf0.5Zr0.5O2 films</title><author>Mukundan, Vineetha ; Consiglio, Steven ; Triyoso, Dina H. ; Tapily, Kandabara ; Schujman, Sandra ; Mart, Clemens ; Kämpfe, Thomas ; Weinreich, Wenke ; Jordan-Sweet, Jean ; Clark, Robert D. ; Leusink, Gert J. ; Diebold, Alain C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c172f-7805886c4b7ca839b5e74760e9d58a8b1001e155c17ad0ffc223dbee43af93643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Atomic layer epitaxy</topic><topic>Electrical properties</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Fine structure</topic><topic>Grazing incidence</topic><topic>Hafnium oxide</topic><topic>Insulators</topic><topic>Orthorhombic phase</topic><topic>Rietveld method</topic><topic>Solid phases</topic><topic>X ray absorption</topic><topic>X-ray diffraction</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukundan, Vineetha</creatorcontrib><creatorcontrib>Consiglio, Steven</creatorcontrib><creatorcontrib>Triyoso, Dina H.</creatorcontrib><creatorcontrib>Tapily, Kandabara</creatorcontrib><creatorcontrib>Schujman, Sandra</creatorcontrib><creatorcontrib>Mart, Clemens</creatorcontrib><creatorcontrib>Kämpfe, Thomas</creatorcontrib><creatorcontrib>Weinreich, Wenke</creatorcontrib><creatorcontrib>Jordan-Sweet, Jean</creatorcontrib><creatorcontrib>Clark, Robert D.</creatorcontrib><creatorcontrib>Leusink, Gert J.</creatorcontrib><creatorcontrib>Diebold, Alain C.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukundan, Vineetha</au><au>Consiglio, Steven</au><au>Triyoso, Dina H.</au><au>Tapily, Kandabara</au><au>Schujman, Sandra</au><au>Mart, Clemens</au><au>Kämpfe, Thomas</au><au>Weinreich, Wenke</au><au>Jordan-Sweet, Jean</au><au>Clark, Robert D.</au><au>Leusink, Gert J.</au><au>Diebold, Alain C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying non-centrosymmetric orthorhombic phase fraction in 10 nm ferroelectric Hf0.5Zr0.5O2 films</atitle><jtitle>Applied physics letters</jtitle><date>2020-12-28</date><risdate>2020</risdate><volume>117</volume><issue>26</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>In this Letter, we report the percentage of the ferroelectric phase in a 10-nm-thick Hf0.5Zr0.5O2 (HZO) film deposited in a metal-insulator-metal stack by atomic layer deposition. The ferroelectric behavior was confirmed by polarization measurements and piezoresponse force microscopy. Ferroelectric behavior in this material has been attributed most likely to the formation of the polar non-centrosymmetric orthorhombic phase [Müller et al., Appl. Phys. Lett. 99, 102903 (2011)], which is difficult to distinguish from the tetragonal phase in x-ray diffraction due to peak overlap. Using a model for each of the crystal phases of hafnia-zirconia, the phase percentages were estimated using a Rietveld refinement method applied to grazing incidence x-ray diffraction data and a linear combination fit analysis procedure [McBriarty et al., Phys. Status Solidi 257, 1900285 (2020)] applied to grazing incidence extended x-ray absorption fine structure data. Using these methods, it was found that the tetragonal (P42/nmc) phase is the most prevalent at 48–60% followed by the polar non-centrosymmetric orthorhombic (Pca21) phase at 35%–40% with the remainder consisting of the monoclinic (P21/c) phase. Understanding the details of the effect of the phase structure on the electrical properties of these materials is extremely important for device engineering of HZO for logic and emerging nonvolatile memory applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0029611</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6186-2961</orcidid><orcidid>https://orcid.org/0000-0002-4672-8676</orcidid><orcidid>https://orcid.org/0000-0002-2755-2556</orcidid><orcidid>https://orcid.org/0000-0001-8543-5879</orcidid><orcidid>https://orcid.org/0000-0002-8090-1049</orcidid><orcidid>https://orcid.org/0000-0001-5034-4272</orcidid><orcidid>https://orcid.org/0000-0002-1828-2187</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2020-12, Vol.117 (26)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2473866779
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建)
subjects Applied physics
Atomic layer epitaxy
Electrical properties
Ferroelectric materials
Ferroelectricity
Fine structure
Grazing incidence
Hafnium oxide
Insulators
Orthorhombic phase
Rietveld method
Solid phases
X ray absorption
X-ray diffraction
Zirconium dioxide
title Quantifying non-centrosymmetric orthorhombic phase fraction in 10 nm ferroelectric Hf0.5Zr0.5O2 films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20non-centrosymmetric%20orthorhombic%20phase%20fraction%20in%2010%E2%80%89nm%20ferroelectric%20Hf0.5Zr0.5O2%20films&rft.jtitle=Applied%20physics%20letters&rft.au=Mukundan,%20Vineetha&rft.date=2020-12-28&rft.volume=117&rft.issue=26&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0029611&rft_dat=%3Cproquest_scita%3E2473866779%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c172f-7805886c4b7ca839b5e74760e9d58a8b1001e155c17ad0ffc223dbee43af93643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473866779&rft_id=info:pmid/&rfr_iscdi=true