Loading…
DD-Net: spectral imaging from a monochromatic dispersed and diffused snapshot
We propose a snapshot spectral imaging method for the visible spectral range using a single monochromatic camera equipped with a two-dimensional (2D) binary-encoded phase diffuser placed at the pupil of the imaging lens and by resorting to deep learning (DL) algorithms for signal reconstruction. Whi...
Saved in:
Published in: | Applied optics (2004) 2020-12, Vol.59 (36), p.11196 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c379t-5b70d0378263ec60ae6ade179cc986fab8c12040856147e74795ae6362a3f3533 |
---|---|
cites | cdi_FETCH-LOGICAL-c379t-5b70d0378263ec60ae6ade179cc986fab8c12040856147e74795ae6362a3f3533 |
container_end_page | |
container_issue | 36 |
container_start_page | 11196 |
container_title | Applied optics (2004) |
container_volume | 59 |
creator | Hauser, Jonathan Zeligman, Amit Averbuch, Amir Zheludev, Valery A Nathan, Menachem |
description | We propose a snapshot spectral imaging method for the visible spectral range using a single monochromatic camera equipped with a two-dimensional (2D) binary-encoded phase diffuser placed at the pupil of the imaging lens and by resorting to deep learning (DL) algorithms for signal reconstruction. While spectral imaging was shown to be feasible using two cameras equipped with a single, one-dimensional (1D) binary diffuser and compressed sensing (CS) algorithms [Appl. Opt.59, 7853 (2020).APOPAI0003-693510.1364/AO.395541], the suggested diffuser design expands the optical response and creates optical spatial and spectral encoding along both dimensions of the image sensor. To recover the spatial and spectral information from the dispersed and diffused (DD) monochromatic snapshot, we developed novel DL algorithms, dubbed DD-Nets, which are tailored to the unique response of the optical system, which includes either a 1D or a 2D diffuser. High-quality reconstructions of the spectral cube in simulation and lab experiments are presented for system configurations consisting of a single monochromatic camera with either a 1D or a 2D diffuser. We demonstrate that the suggested system configuration with the 2D diffuser outperforms system configurations with a 1D diffuser that utilize either DL-based or CS-based algorithms for the reconstruction of the spectral cube. |
doi_str_mv | 10.1364/AO.404524 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2474316724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2474316724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-5b70d0378263ec60ae6ade179cc986fab8c12040856147e74795ae6362a3f3533</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EoqVw4A8gS5w4pPjthFvU8pIKvYDEzXIdu03VxMFODvx7XLVw2lnp0-zOAHCN0RRTwe7L5ZQhxgk7AWOCOc8oFvwUjJMsMkzyrxG4iHGLEOWskOdgRCkVBDE0Bm_zefZu-wcYO2v6oHewbvS6btfQBd9ADRvferNJWve1gVWduBBtBXVbpc25Yb_EVndx4_tLcOb0Ltqr45yAz6fHj9lLtlg-v87KRWaoLPqMrySqEJU5EdQagbQVurJYFsYUuXB6lRu8fy_nAjNpJZMFT0z6WVNHOaUTcHvw7YL_Hmzs1dYPoU0nFWGSpfiSsETdHSgTfIzBOtWFlC78KIzUvjhVLtWhuMTeHB2HVWOrf_KvKfoLHohmfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474316724</pqid></control><display><type>article</type><title>DD-Net: spectral imaging from a monochromatic dispersed and diffused snapshot</title><source>Optica Publishing Group Journals</source><creator>Hauser, Jonathan ; Zeligman, Amit ; Averbuch, Amir ; Zheludev, Valery A ; Nathan, Menachem</creator><creatorcontrib>Hauser, Jonathan ; Zeligman, Amit ; Averbuch, Amir ; Zheludev, Valery A ; Nathan, Menachem</creatorcontrib><description>We propose a snapshot spectral imaging method for the visible spectral range using a single monochromatic camera equipped with a two-dimensional (2D) binary-encoded phase diffuser placed at the pupil of the imaging lens and by resorting to deep learning (DL) algorithms for signal reconstruction. While spectral imaging was shown to be feasible using two cameras equipped with a single, one-dimensional (1D) binary diffuser and compressed sensing (CS) algorithms [Appl. Opt.59, 7853 (2020).APOPAI0003-693510.1364/AO.395541], the suggested diffuser design expands the optical response and creates optical spatial and spectral encoding along both dimensions of the image sensor. To recover the spatial and spectral information from the dispersed and diffused (DD) monochromatic snapshot, we developed novel DL algorithms, dubbed DD-Nets, which are tailored to the unique response of the optical system, which includes either a 1D or a 2D diffuser. High-quality reconstructions of the spectral cube in simulation and lab experiments are presented for system configurations consisting of a single monochromatic camera with either a 1D or a 2D diffuser. We demonstrate that the suggested system configuration with the 2D diffuser outperforms system configurations with a 1D diffuser that utilize either DL-based or CS-based algorithms for the reconstruction of the spectral cube.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>DOI: 10.1364/AO.404524</identifier><identifier>PMID: 33362040</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Algorithms ; Cameras ; Configurations ; Diffusers ; Dispersion ; Image reconstruction ; Machine learning ; Signal reconstruction ; Spectra</subject><ispartof>Applied optics (2004), 2020-12, Vol.59 (36), p.11196</ispartof><rights>Copyright Optical Society of America Dec 20, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-5b70d0378263ec60ae6ade179cc986fab8c12040856147e74795ae6362a3f3533</citedby><cites>FETCH-LOGICAL-c379t-5b70d0378263ec60ae6ade179cc986fab8c12040856147e74795ae6362a3f3533</cites><orcidid>0000-0003-0767-0771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3257,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33362040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hauser, Jonathan</creatorcontrib><creatorcontrib>Zeligman, Amit</creatorcontrib><creatorcontrib>Averbuch, Amir</creatorcontrib><creatorcontrib>Zheludev, Valery A</creatorcontrib><creatorcontrib>Nathan, Menachem</creatorcontrib><title>DD-Net: spectral imaging from a monochromatic dispersed and diffused snapshot</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>We propose a snapshot spectral imaging method for the visible spectral range using a single monochromatic camera equipped with a two-dimensional (2D) binary-encoded phase diffuser placed at the pupil of the imaging lens and by resorting to deep learning (DL) algorithms for signal reconstruction. While spectral imaging was shown to be feasible using two cameras equipped with a single, one-dimensional (1D) binary diffuser and compressed sensing (CS) algorithms [Appl. Opt.59, 7853 (2020).APOPAI0003-693510.1364/AO.395541], the suggested diffuser design expands the optical response and creates optical spatial and spectral encoding along both dimensions of the image sensor. To recover the spatial and spectral information from the dispersed and diffused (DD) monochromatic snapshot, we developed novel DL algorithms, dubbed DD-Nets, which are tailored to the unique response of the optical system, which includes either a 1D or a 2D diffuser. High-quality reconstructions of the spectral cube in simulation and lab experiments are presented for system configurations consisting of a single monochromatic camera with either a 1D or a 2D diffuser. We demonstrate that the suggested system configuration with the 2D diffuser outperforms system configurations with a 1D diffuser that utilize either DL-based or CS-based algorithms for the reconstruction of the spectral cube.</description><subject>Algorithms</subject><subject>Cameras</subject><subject>Configurations</subject><subject>Diffusers</subject><subject>Dispersion</subject><subject>Image reconstruction</subject><subject>Machine learning</subject><subject>Signal reconstruction</subject><subject>Spectra</subject><issn>1559-128X</issn><issn>2155-3165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EoqVw4A8gS5w4pPjthFvU8pIKvYDEzXIdu03VxMFODvx7XLVw2lnp0-zOAHCN0RRTwe7L5ZQhxgk7AWOCOc8oFvwUjJMsMkzyrxG4iHGLEOWskOdgRCkVBDE0Bm_zefZu-wcYO2v6oHewbvS6btfQBd9ADRvferNJWve1gVWduBBtBXVbpc25Yb_EVndx4_tLcOb0Ltqr45yAz6fHj9lLtlg-v87KRWaoLPqMrySqEJU5EdQagbQVurJYFsYUuXB6lRu8fy_nAjNpJZMFT0z6WVNHOaUTcHvw7YL_Hmzs1dYPoU0nFWGSpfiSsETdHSgTfIzBOtWFlC78KIzUvjhVLtWhuMTeHB2HVWOrf_KvKfoLHohmfg</recordid><startdate>20201220</startdate><enddate>20201220</enddate><creator>Hauser, Jonathan</creator><creator>Zeligman, Amit</creator><creator>Averbuch, Amir</creator><creator>Zheludev, Valery A</creator><creator>Nathan, Menachem</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0767-0771</orcidid></search><sort><creationdate>20201220</creationdate><title>DD-Net: spectral imaging from a monochromatic dispersed and diffused snapshot</title><author>Hauser, Jonathan ; Zeligman, Amit ; Averbuch, Amir ; Zheludev, Valery A ; Nathan, Menachem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-5b70d0378263ec60ae6ade179cc986fab8c12040856147e74795ae6362a3f3533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Configurations</topic><topic>Diffusers</topic><topic>Dispersion</topic><topic>Image reconstruction</topic><topic>Machine learning</topic><topic>Signal reconstruction</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hauser, Jonathan</creatorcontrib><creatorcontrib>Zeligman, Amit</creatorcontrib><creatorcontrib>Averbuch, Amir</creatorcontrib><creatorcontrib>Zheludev, Valery A</creatorcontrib><creatorcontrib>Nathan, Menachem</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hauser, Jonathan</au><au>Zeligman, Amit</au><au>Averbuch, Amir</au><au>Zheludev, Valery A</au><au>Nathan, Menachem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DD-Net: spectral imaging from a monochromatic dispersed and diffused snapshot</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2020-12-20</date><risdate>2020</risdate><volume>59</volume><issue>36</issue><spage>11196</spage><pages>11196-</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><abstract>We propose a snapshot spectral imaging method for the visible spectral range using a single monochromatic camera equipped with a two-dimensional (2D) binary-encoded phase diffuser placed at the pupil of the imaging lens and by resorting to deep learning (DL) algorithms for signal reconstruction. While spectral imaging was shown to be feasible using two cameras equipped with a single, one-dimensional (1D) binary diffuser and compressed sensing (CS) algorithms [Appl. Opt.59, 7853 (2020).APOPAI0003-693510.1364/AO.395541], the suggested diffuser design expands the optical response and creates optical spatial and spectral encoding along both dimensions of the image sensor. To recover the spatial and spectral information from the dispersed and diffused (DD) monochromatic snapshot, we developed novel DL algorithms, dubbed DD-Nets, which are tailored to the unique response of the optical system, which includes either a 1D or a 2D diffuser. High-quality reconstructions of the spectral cube in simulation and lab experiments are presented for system configurations consisting of a single monochromatic camera with either a 1D or a 2D diffuser. We demonstrate that the suggested system configuration with the 2D diffuser outperforms system configurations with a 1D diffuser that utilize either DL-based or CS-based algorithms for the reconstruction of the spectral cube.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>33362040</pmid><doi>10.1364/AO.404524</doi><orcidid>https://orcid.org/0000-0003-0767-0771</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-128X |
ispartof | Applied optics (2004), 2020-12, Vol.59 (36), p.11196 |
issn | 1559-128X 2155-3165 |
language | eng |
recordid | cdi_proquest_journals_2474316724 |
source | Optica Publishing Group Journals |
subjects | Algorithms Cameras Configurations Diffusers Dispersion Image reconstruction Machine learning Signal reconstruction Spectra |
title | DD-Net: spectral imaging from a monochromatic dispersed and diffused snapshot |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DD-Net:%20spectral%20imaging%20from%20a%20monochromatic%20dispersed%20and%20diffused%20snapshot&rft.jtitle=Applied%20optics%20(2004)&rft.au=Hauser,%20Jonathan&rft.date=2020-12-20&rft.volume=59&rft.issue=36&rft.spage=11196&rft.pages=11196-&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.404524&rft_dat=%3Cproquest_cross%3E2474316724%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-5b70d0378263ec60ae6ade179cc986fab8c12040856147e74795ae6362a3f3533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2474316724&rft_id=info:pmid/33362040&rfr_iscdi=true |