Loading…

A Numerical Analysis of Convection Heat Transfer and Friction Factor for Oscillating Corrugated Channel Flows

The aim of this article is to understand numerically the flow and heat transfer characteristics under oscillating flow conditions for periodically corrugated wavy channel. For the same channel, under steady-state flow conditions, experimental and numerical studies were done under steady-state flow c...

Full description

Saved in:
Bibliographic Details
Published in:Heat transfer engineering 2021-02, Vol.42 (3-4), p.181-190
Main Authors: Aslan, Erman, Ozsaban, Mert, Ozcelik, Guven, Guven, Hasan Riza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-345164f7d2c726a7e398c7663b8b4ff297fb38136b64221ee6ed4c753d82060e3
cites cdi_FETCH-LOGICAL-c375t-345164f7d2c726a7e398c7663b8b4ff297fb38136b64221ee6ed4c753d82060e3
container_end_page 190
container_issue 3-4
container_start_page 181
container_title Heat transfer engineering
container_volume 42
creator Aslan, Erman
Ozsaban, Mert
Ozcelik, Guven
Guven, Hasan Riza
description The aim of this article is to understand numerically the flow and heat transfer characteristics under oscillating flow conditions for periodically corrugated wavy channel. For the same channel, under steady-state flow conditions, experimental and numerical studies were done under steady-state flow conditions by our two previous studies. Three turbulence models are used, namely the k-ω, the Shear Stress Transport (SST), and the transition SST. According to the previous study, the best agreement with experiments was obtained using the SST turbulence model. Therefore, the SST turbulence model is applied in this study on the oscillating flow. The finite volume method is used as the numerical method. Investigations are performed for air flowing through corrugated channel which has sharp wavy peaks with an inclination angle of 30° and 5 mm minimum channel height. Reynolds number is varied within the range 6294-7380, while keeping the Prandtl number constant at 0.70. Four different sinusoidal oscillating flow conditions are used. Variations of the Nusselt number, friction factor, and thermo-hydraulic performance factor with the Reynolds number are studied.
doi_str_mv 10.1080/01457632.2019.1699287
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2474798005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2474798005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-345164f7d2c726a7e398c7663b8b4ff297fb38136b64221ee6ed4c753d82060e3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKc_QQh43ZmPJmnvHMM6YbibeR3SNJkdWTKTVtm_t3Xz1ovDuTjP-8J5ALjHaIZRgR4RzpnglMwIwuUM87IkhbgAE8wIzhCj4hJMRiYboWtwk9IOIUwZYhOwn8O3fm9iq5WDc6_cMbUJBgsXwX8Z3bXBw6VRHdxE5ZM1ESrfwGrgf0-V0l2I0A6zTrp1TnWt3w7hGPut6kwDFx_Ke-Ng5cJ3ugVXVrlk7s57Ct6r581ima3WL6-L-SrTVLAuoznDPLeiIVoQroShZaEF57Qu6txaUgpb0wJTXvOcEGwMN02uBaNNQRBHhk7Bw6n3EMNnb1Ind6GPw3dJklzkoizQ4GUK2InSMaQUjZWH2O5VPEqM5GhW_pmVo1l5Njvknk651g-P79V3iK6RnTq6EO2gSbdJ0v8rfgAqr39X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474798005</pqid></control><display><type>article</type><title>A Numerical Analysis of Convection Heat Transfer and Friction Factor for Oscillating Corrugated Channel Flows</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Aslan, Erman ; Ozsaban, Mert ; Ozcelik, Guven ; Guven, Hasan Riza</creator><creatorcontrib>Aslan, Erman ; Ozsaban, Mert ; Ozcelik, Guven ; Guven, Hasan Riza</creatorcontrib><description>The aim of this article is to understand numerically the flow and heat transfer characteristics under oscillating flow conditions for periodically corrugated wavy channel. For the same channel, under steady-state flow conditions, experimental and numerical studies were done under steady-state flow conditions by our two previous studies. Three turbulence models are used, namely the k-ω, the Shear Stress Transport (SST), and the transition SST. According to the previous study, the best agreement with experiments was obtained using the SST turbulence model. Therefore, the SST turbulence model is applied in this study on the oscillating flow. The finite volume method is used as the numerical method. Investigations are performed for air flowing through corrugated channel which has sharp wavy peaks with an inclination angle of 30° and 5 mm minimum channel height. Reynolds number is varied within the range 6294-7380, while keeping the Prandtl number constant at 0.70. Four different sinusoidal oscillating flow conditions are used. Variations of the Nusselt number, friction factor, and thermo-hydraulic performance factor with the Reynolds number are studied.</description><identifier>ISSN: 0145-7632</identifier><identifier>EISSN: 1521-0537</identifier><identifier>DOI: 10.1080/01457632.2019.1699287</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis</publisher><subject>Aerodynamics ; Channel flow ; Computational fluid dynamics ; Equilibrium flow ; Finite volume method ; Flow control ; Fluid flow ; Friction factor ; Heat transfer ; Inclination angle ; Numerical analysis ; Numerical methods ; Oscillating flow ; Prandtl number ; Reynolds number ; Shear stress ; Steady state ; Turbulence models</subject><ispartof>Heat transfer engineering, 2021-02, Vol.42 (3-4), p.181-190</ispartof><rights>2019 Taylor &amp; Francis Group, LLC 2019</rights><rights>2019 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-345164f7d2c726a7e398c7663b8b4ff297fb38136b64221ee6ed4c753d82060e3</citedby><cites>FETCH-LOGICAL-c375t-345164f7d2c726a7e398c7663b8b4ff297fb38136b64221ee6ed4c753d82060e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Aslan, Erman</creatorcontrib><creatorcontrib>Ozsaban, Mert</creatorcontrib><creatorcontrib>Ozcelik, Guven</creatorcontrib><creatorcontrib>Guven, Hasan Riza</creatorcontrib><title>A Numerical Analysis of Convection Heat Transfer and Friction Factor for Oscillating Corrugated Channel Flows</title><title>Heat transfer engineering</title><description>The aim of this article is to understand numerically the flow and heat transfer characteristics under oscillating flow conditions for periodically corrugated wavy channel. For the same channel, under steady-state flow conditions, experimental and numerical studies were done under steady-state flow conditions by our two previous studies. Three turbulence models are used, namely the k-ω, the Shear Stress Transport (SST), and the transition SST. According to the previous study, the best agreement with experiments was obtained using the SST turbulence model. Therefore, the SST turbulence model is applied in this study on the oscillating flow. The finite volume method is used as the numerical method. Investigations are performed for air flowing through corrugated channel which has sharp wavy peaks with an inclination angle of 30° and 5 mm minimum channel height. Reynolds number is varied within the range 6294-7380, while keeping the Prandtl number constant at 0.70. Four different sinusoidal oscillating flow conditions are used. Variations of the Nusselt number, friction factor, and thermo-hydraulic performance factor with the Reynolds number are studied.</description><subject>Aerodynamics</subject><subject>Channel flow</subject><subject>Computational fluid dynamics</subject><subject>Equilibrium flow</subject><subject>Finite volume method</subject><subject>Flow control</subject><subject>Fluid flow</subject><subject>Friction factor</subject><subject>Heat transfer</subject><subject>Inclination angle</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Oscillating flow</subject><subject>Prandtl number</subject><subject>Reynolds number</subject><subject>Shear stress</subject><subject>Steady state</subject><subject>Turbulence models</subject><issn>0145-7632</issn><issn>1521-0537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKc_QQh43ZmPJmnvHMM6YbibeR3SNJkdWTKTVtm_t3Xz1ovDuTjP-8J5ALjHaIZRgR4RzpnglMwIwuUM87IkhbgAE8wIzhCj4hJMRiYboWtwk9IOIUwZYhOwn8O3fm9iq5WDc6_cMbUJBgsXwX8Z3bXBw6VRHdxE5ZM1ESrfwGrgf0-V0l2I0A6zTrp1TnWt3w7hGPut6kwDFx_Ke-Ng5cJ3ugVXVrlk7s57Ct6r581ima3WL6-L-SrTVLAuoznDPLeiIVoQroShZaEF57Qu6txaUgpb0wJTXvOcEGwMN02uBaNNQRBHhk7Bw6n3EMNnb1Ind6GPw3dJklzkoizQ4GUK2InSMaQUjZWH2O5VPEqM5GhW_pmVo1l5Njvknk651g-P79V3iK6RnTq6EO2gSbdJ0v8rfgAqr39X</recordid><startdate>20210221</startdate><enddate>20210221</enddate><creator>Aslan, Erman</creator><creator>Ozsaban, Mert</creator><creator>Ozcelik, Guven</creator><creator>Guven, Hasan Riza</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20210221</creationdate><title>A Numerical Analysis of Convection Heat Transfer and Friction Factor for Oscillating Corrugated Channel Flows</title><author>Aslan, Erman ; Ozsaban, Mert ; Ozcelik, Guven ; Guven, Hasan Riza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-345164f7d2c726a7e398c7663b8b4ff297fb38136b64221ee6ed4c753d82060e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerodynamics</topic><topic>Channel flow</topic><topic>Computational fluid dynamics</topic><topic>Equilibrium flow</topic><topic>Finite volume method</topic><topic>Flow control</topic><topic>Fluid flow</topic><topic>Friction factor</topic><topic>Heat transfer</topic><topic>Inclination angle</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Oscillating flow</topic><topic>Prandtl number</topic><topic>Reynolds number</topic><topic>Shear stress</topic><topic>Steady state</topic><topic>Turbulence models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aslan, Erman</creatorcontrib><creatorcontrib>Ozsaban, Mert</creatorcontrib><creatorcontrib>Ozcelik, Guven</creatorcontrib><creatorcontrib>Guven, Hasan Riza</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Heat transfer engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aslan, Erman</au><au>Ozsaban, Mert</au><au>Ozcelik, Guven</au><au>Guven, Hasan Riza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Numerical Analysis of Convection Heat Transfer and Friction Factor for Oscillating Corrugated Channel Flows</atitle><jtitle>Heat transfer engineering</jtitle><date>2021-02-21</date><risdate>2021</risdate><volume>42</volume><issue>3-4</issue><spage>181</spage><epage>190</epage><pages>181-190</pages><issn>0145-7632</issn><eissn>1521-0537</eissn><abstract>The aim of this article is to understand numerically the flow and heat transfer characteristics under oscillating flow conditions for periodically corrugated wavy channel. For the same channel, under steady-state flow conditions, experimental and numerical studies were done under steady-state flow conditions by our two previous studies. Three turbulence models are used, namely the k-ω, the Shear Stress Transport (SST), and the transition SST. According to the previous study, the best agreement with experiments was obtained using the SST turbulence model. Therefore, the SST turbulence model is applied in this study on the oscillating flow. The finite volume method is used as the numerical method. Investigations are performed for air flowing through corrugated channel which has sharp wavy peaks with an inclination angle of 30° and 5 mm minimum channel height. Reynolds number is varied within the range 6294-7380, while keeping the Prandtl number constant at 0.70. Four different sinusoidal oscillating flow conditions are used. Variations of the Nusselt number, friction factor, and thermo-hydraulic performance factor with the Reynolds number are studied.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/01457632.2019.1699287</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0145-7632
ispartof Heat transfer engineering, 2021-02, Vol.42 (3-4), p.181-190
issn 0145-7632
1521-0537
language eng
recordid cdi_proquest_journals_2474798005
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects Aerodynamics
Channel flow
Computational fluid dynamics
Equilibrium flow
Finite volume method
Flow control
Fluid flow
Friction factor
Heat transfer
Inclination angle
Numerical analysis
Numerical methods
Oscillating flow
Prandtl number
Reynolds number
Shear stress
Steady state
Turbulence models
title A Numerical Analysis of Convection Heat Transfer and Friction Factor for Oscillating Corrugated Channel Flows
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A07%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Numerical%20Analysis%20of%20Convection%20Heat%20Transfer%20and%20Friction%20Factor%20for%20Oscillating%20Corrugated%20Channel%20Flows&rft.jtitle=Heat%20transfer%20engineering&rft.au=Aslan,%20Erman&rft.date=2021-02-21&rft.volume=42&rft.issue=3-4&rft.spage=181&rft.epage=190&rft.pages=181-190&rft.issn=0145-7632&rft.eissn=1521-0537&rft_id=info:doi/10.1080/01457632.2019.1699287&rft_dat=%3Cproquest_cross%3E2474798005%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-345164f7d2c726a7e398c7663b8b4ff297fb38136b64221ee6ed4c753d82060e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2474798005&rft_id=info:pmid/&rfr_iscdi=true