Loading…
A Numerical Analysis of Convection Heat Transfer and Friction Factor for Oscillating Corrugated Channel Flows
The aim of this article is to understand numerically the flow and heat transfer characteristics under oscillating flow conditions for periodically corrugated wavy channel. For the same channel, under steady-state flow conditions, experimental and numerical studies were done under steady-state flow c...
Saved in:
Published in: | Heat transfer engineering 2021-02, Vol.42 (3-4), p.181-190 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-345164f7d2c726a7e398c7663b8b4ff297fb38136b64221ee6ed4c753d82060e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-345164f7d2c726a7e398c7663b8b4ff297fb38136b64221ee6ed4c753d82060e3 |
container_end_page | 190 |
container_issue | 3-4 |
container_start_page | 181 |
container_title | Heat transfer engineering |
container_volume | 42 |
creator | Aslan, Erman Ozsaban, Mert Ozcelik, Guven Guven, Hasan Riza |
description | The aim of this article is to understand numerically the flow and heat transfer characteristics under oscillating flow conditions for periodically corrugated wavy channel. For the same channel, under steady-state flow conditions, experimental and numerical studies were done under steady-state flow conditions by our two previous studies. Three turbulence models are used, namely the k-ω, the Shear Stress Transport (SST), and the transition SST. According to the previous study, the best agreement with experiments was obtained using the SST turbulence model. Therefore, the SST turbulence model is applied in this study on the oscillating flow. The finite volume method is used as the numerical method. Investigations are performed for air flowing through corrugated channel which has sharp wavy peaks with an inclination angle of 30° and 5 mm minimum channel height. Reynolds number is varied within the range 6294-7380, while keeping the Prandtl number constant at 0.70. Four different sinusoidal oscillating flow conditions are used. Variations of the Nusselt number, friction factor, and thermo-hydraulic performance factor with the Reynolds number are studied. |
doi_str_mv | 10.1080/01457632.2019.1699287 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2474798005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2474798005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-345164f7d2c726a7e398c7663b8b4ff297fb38136b64221ee6ed4c753d82060e3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKc_QQh43ZmPJmnvHMM6YbibeR3SNJkdWTKTVtm_t3Xz1ovDuTjP-8J5ALjHaIZRgR4RzpnglMwIwuUM87IkhbgAE8wIzhCj4hJMRiYboWtwk9IOIUwZYhOwn8O3fm9iq5WDc6_cMbUJBgsXwX8Z3bXBw6VRHdxE5ZM1ESrfwGrgf0-V0l2I0A6zTrp1TnWt3w7hGPut6kwDFx_Ke-Ng5cJ3ugVXVrlk7s57Ct6r581ima3WL6-L-SrTVLAuoznDPLeiIVoQroShZaEF57Qu6txaUgpb0wJTXvOcEGwMN02uBaNNQRBHhk7Bw6n3EMNnb1Ind6GPw3dJklzkoizQ4GUK2InSMaQUjZWH2O5VPEqM5GhW_pmVo1l5Njvknk651g-P79V3iK6RnTq6EO2gSbdJ0v8rfgAqr39X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474798005</pqid></control><display><type>article</type><title>A Numerical Analysis of Convection Heat Transfer and Friction Factor for Oscillating Corrugated Channel Flows</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Aslan, Erman ; Ozsaban, Mert ; Ozcelik, Guven ; Guven, Hasan Riza</creator><creatorcontrib>Aslan, Erman ; Ozsaban, Mert ; Ozcelik, Guven ; Guven, Hasan Riza</creatorcontrib><description>The aim of this article is to understand numerically the flow and heat transfer characteristics under oscillating flow conditions for periodically corrugated wavy channel. For the same channel, under steady-state flow conditions, experimental and numerical studies were done under steady-state flow conditions by our two previous studies. Three turbulence models are used, namely the k-ω, the Shear Stress Transport (SST), and the transition SST. According to the previous study, the best agreement with experiments was obtained using the SST turbulence model. Therefore, the SST turbulence model is applied in this study on the oscillating flow. The finite volume method is used as the numerical method. Investigations are performed for air flowing through corrugated channel which has sharp wavy peaks with an inclination angle of 30° and 5 mm minimum channel height. Reynolds number is varied within the range 6294-7380, while keeping the Prandtl number constant at 0.70. Four different sinusoidal oscillating flow conditions are used. Variations of the Nusselt number, friction factor, and thermo-hydraulic performance factor with the Reynolds number are studied.</description><identifier>ISSN: 0145-7632</identifier><identifier>EISSN: 1521-0537</identifier><identifier>DOI: 10.1080/01457632.2019.1699287</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis</publisher><subject>Aerodynamics ; Channel flow ; Computational fluid dynamics ; Equilibrium flow ; Finite volume method ; Flow control ; Fluid flow ; Friction factor ; Heat transfer ; Inclination angle ; Numerical analysis ; Numerical methods ; Oscillating flow ; Prandtl number ; Reynolds number ; Shear stress ; Steady state ; Turbulence models</subject><ispartof>Heat transfer engineering, 2021-02, Vol.42 (3-4), p.181-190</ispartof><rights>2019 Taylor & Francis Group, LLC 2019</rights><rights>2019 Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-345164f7d2c726a7e398c7663b8b4ff297fb38136b64221ee6ed4c753d82060e3</citedby><cites>FETCH-LOGICAL-c375t-345164f7d2c726a7e398c7663b8b4ff297fb38136b64221ee6ed4c753d82060e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Aslan, Erman</creatorcontrib><creatorcontrib>Ozsaban, Mert</creatorcontrib><creatorcontrib>Ozcelik, Guven</creatorcontrib><creatorcontrib>Guven, Hasan Riza</creatorcontrib><title>A Numerical Analysis of Convection Heat Transfer and Friction Factor for Oscillating Corrugated Channel Flows</title><title>Heat transfer engineering</title><description>The aim of this article is to understand numerically the flow and heat transfer characteristics under oscillating flow conditions for periodically corrugated wavy channel. For the same channel, under steady-state flow conditions, experimental and numerical studies were done under steady-state flow conditions by our two previous studies. Three turbulence models are used, namely the k-ω, the Shear Stress Transport (SST), and the transition SST. According to the previous study, the best agreement with experiments was obtained using the SST turbulence model. Therefore, the SST turbulence model is applied in this study on the oscillating flow. The finite volume method is used as the numerical method. Investigations are performed for air flowing through corrugated channel which has sharp wavy peaks with an inclination angle of 30° and 5 mm minimum channel height. Reynolds number is varied within the range 6294-7380, while keeping the Prandtl number constant at 0.70. Four different sinusoidal oscillating flow conditions are used. Variations of the Nusselt number, friction factor, and thermo-hydraulic performance factor with the Reynolds number are studied.</description><subject>Aerodynamics</subject><subject>Channel flow</subject><subject>Computational fluid dynamics</subject><subject>Equilibrium flow</subject><subject>Finite volume method</subject><subject>Flow control</subject><subject>Fluid flow</subject><subject>Friction factor</subject><subject>Heat transfer</subject><subject>Inclination angle</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Oscillating flow</subject><subject>Prandtl number</subject><subject>Reynolds number</subject><subject>Shear stress</subject><subject>Steady state</subject><subject>Turbulence models</subject><issn>0145-7632</issn><issn>1521-0537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKc_QQh43ZmPJmnvHMM6YbibeR3SNJkdWTKTVtm_t3Xz1ovDuTjP-8J5ALjHaIZRgR4RzpnglMwIwuUM87IkhbgAE8wIzhCj4hJMRiYboWtwk9IOIUwZYhOwn8O3fm9iq5WDc6_cMbUJBgsXwX8Z3bXBw6VRHdxE5ZM1ESrfwGrgf0-V0l2I0A6zTrp1TnWt3w7hGPut6kwDFx_Ke-Ng5cJ3ugVXVrlk7s57Ct6r581ima3WL6-L-SrTVLAuoznDPLeiIVoQroShZaEF57Qu6txaUgpb0wJTXvOcEGwMN02uBaNNQRBHhk7Bw6n3EMNnb1Ind6GPw3dJklzkoizQ4GUK2InSMaQUjZWH2O5VPEqM5GhW_pmVo1l5Njvknk651g-P79V3iK6RnTq6EO2gSbdJ0v8rfgAqr39X</recordid><startdate>20210221</startdate><enddate>20210221</enddate><creator>Aslan, Erman</creator><creator>Ozsaban, Mert</creator><creator>Ozcelik, Guven</creator><creator>Guven, Hasan Riza</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20210221</creationdate><title>A Numerical Analysis of Convection Heat Transfer and Friction Factor for Oscillating Corrugated Channel Flows</title><author>Aslan, Erman ; Ozsaban, Mert ; Ozcelik, Guven ; Guven, Hasan Riza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-345164f7d2c726a7e398c7663b8b4ff297fb38136b64221ee6ed4c753d82060e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerodynamics</topic><topic>Channel flow</topic><topic>Computational fluid dynamics</topic><topic>Equilibrium flow</topic><topic>Finite volume method</topic><topic>Flow control</topic><topic>Fluid flow</topic><topic>Friction factor</topic><topic>Heat transfer</topic><topic>Inclination angle</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Oscillating flow</topic><topic>Prandtl number</topic><topic>Reynolds number</topic><topic>Shear stress</topic><topic>Steady state</topic><topic>Turbulence models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aslan, Erman</creatorcontrib><creatorcontrib>Ozsaban, Mert</creatorcontrib><creatorcontrib>Ozcelik, Guven</creatorcontrib><creatorcontrib>Guven, Hasan Riza</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Heat transfer engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aslan, Erman</au><au>Ozsaban, Mert</au><au>Ozcelik, Guven</au><au>Guven, Hasan Riza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Numerical Analysis of Convection Heat Transfer and Friction Factor for Oscillating Corrugated Channel Flows</atitle><jtitle>Heat transfer engineering</jtitle><date>2021-02-21</date><risdate>2021</risdate><volume>42</volume><issue>3-4</issue><spage>181</spage><epage>190</epage><pages>181-190</pages><issn>0145-7632</issn><eissn>1521-0537</eissn><abstract>The aim of this article is to understand numerically the flow and heat transfer characteristics under oscillating flow conditions for periodically corrugated wavy channel. For the same channel, under steady-state flow conditions, experimental and numerical studies were done under steady-state flow conditions by our two previous studies. Three turbulence models are used, namely the k-ω, the Shear Stress Transport (SST), and the transition SST. According to the previous study, the best agreement with experiments was obtained using the SST turbulence model. Therefore, the SST turbulence model is applied in this study on the oscillating flow. The finite volume method is used as the numerical method. Investigations are performed for air flowing through corrugated channel which has sharp wavy peaks with an inclination angle of 30° and 5 mm minimum channel height. Reynolds number is varied within the range 6294-7380, while keeping the Prandtl number constant at 0.70. Four different sinusoidal oscillating flow conditions are used. Variations of the Nusselt number, friction factor, and thermo-hydraulic performance factor with the Reynolds number are studied.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis</pub><doi>10.1080/01457632.2019.1699287</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0145-7632 |
ispartof | Heat transfer engineering, 2021-02, Vol.42 (3-4), p.181-190 |
issn | 0145-7632 1521-0537 |
language | eng |
recordid | cdi_proquest_journals_2474798005 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
subjects | Aerodynamics Channel flow Computational fluid dynamics Equilibrium flow Finite volume method Flow control Fluid flow Friction factor Heat transfer Inclination angle Numerical analysis Numerical methods Oscillating flow Prandtl number Reynolds number Shear stress Steady state Turbulence models |
title | A Numerical Analysis of Convection Heat Transfer and Friction Factor for Oscillating Corrugated Channel Flows |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A07%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Numerical%20Analysis%20of%20Convection%20Heat%20Transfer%20and%20Friction%20Factor%20for%20Oscillating%20Corrugated%20Channel%20Flows&rft.jtitle=Heat%20transfer%20engineering&rft.au=Aslan,%20Erman&rft.date=2021-02-21&rft.volume=42&rft.issue=3-4&rft.spage=181&rft.epage=190&rft.pages=181-190&rft.issn=0145-7632&rft.eissn=1521-0537&rft_id=info:doi/10.1080/01457632.2019.1699287&rft_dat=%3Cproquest_cross%3E2474798005%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-345164f7d2c726a7e398c7663b8b4ff297fb38136b64221ee6ed4c753d82060e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2474798005&rft_id=info:pmid/&rfr_iscdi=true |