Loading…

Baseline correction method based on improved asymmetrically reweighted penalized least squares for the Raman spectrum

We present a baseline correction method based on improved asymmetrically reweighted penalized least squares (IarPLS) for the Raman spectrum. This method utilizes a new S-type function to reduce the risk of baseline overestimation and speed up the reweighting process. Simulated spectra with different...

Full description

Saved in:
Bibliographic Details
Published in:Applied optics (2004) 2020-12, Vol.59 (34), p.10933
Main Authors: Ye, Jianfeng, Tian, Ziyang, Wei, Haoyun, Li, Yan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a baseline correction method based on improved asymmetrically reweighted penalized least squares (IarPLS) for the Raman spectrum. This method utilizes a new S-type function to reduce the risk of baseline overestimation and speed up the reweighting process. Simulated spectra with different levels of noise and measured spectra with strong fluorescence background from different samples are used to validate the performance of the proposed algorithm. Considering the drawbacks of the weighting rules for the asymmetrically reweighted penalized least squares (arPLS) method, we adapt an inverse square root unit (ISRU) function, which performs well in baseline correction. Compared with previous penalized least squares methods, such as asymmetric least squares, adaptive iteratively reweighted penalized least squares, and arPLS, experiments with the simulated Raman spectra have confirmed that the proposed method yields better outcomes. Experiments with the measured Raman spectra show that the IarPLS method can improve real Raman spectra within 20 ms. The results show that the proposed method can be successfully applied to the practical Raman spectrum as a strong basis for quantitative analysis.
ISSN:1559-128X
2155-3165
DOI:10.1364/AO.404863