Loading…

Application of soft computing to predict water quality in wetland

Prediction of water quality is a critical issue because of its significant impact on human and ecosystem health. This research aims to predict water quality index (WQI) for the free surface wetland using three soft computing techniques namely, adaptive neuro-fuzzy system (ANFIS), artificial neural n...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2021, Vol.28 (1), p.185-200
Main Authors: Pham, Quoc Bao, Mohammadpour, Reza, Linh, Nguyen Thi Thuy, Mohajane, Meriame, Pourjasem, Ameneh, Sammen, Saad Sh, Anh, Duong Tran, Nam, Van Thai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Prediction of water quality is a critical issue because of its significant impact on human and ecosystem health. This research aims to predict water quality index (WQI) for the free surface wetland using three soft computing techniques namely, adaptive neuro-fuzzy system (ANFIS), artificial neural networks (ANNs), and group method of data handling (GMDH). Seventeen wetland points for a period of 14 months were considered for monitoring water quality parameters including conductivity, suspended solid (SS), biochemical oxygen demand (BOD), ammoniacal nitrogen (AN), chemical oxygen demand (COD), dissolved oxygen (DO), temperature, pH, phosphate nitrite, and nitrate. The sensitivity analysis performed by ANFIS indicates that the significant parameters to predict WQI are pH, COD, AN, and SS. The results indicated that ANFIS with Nash-Sutcliffe Efficiency (NSE = 0.9634) and mean absolute error (MAE = 0.0219) has better performance to predict the WQI comparing with ANNs (NSE = 0.9617 and MAE = 0.0222) and GMDH (NSE = 0.9594 and MAE = 0.0245) models. However, ANNs provided a comparable prediction and the GMDH can be considered as a technique with an acceptable prediction for practical purposes. The findings of this study could be used as an effective reference for policy makers in the field of water resource management. Decreasing variables, reduction of running time, and high speed of these approaches are the most important reasons to employ them in any aquatic environment worldwide.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-020-10344-8