Loading…

Programming nanoparticle valence bonds with single-stranded DNA encoders

Nature has evolved strategies to encode information within a single biopolymer to program biomolecular interactions with characteristic stoichiometry, orthogonality and reconfigurability. Nevertheless, synthetic approaches for programming molecular reactions or assembly generally rely on the use of...

Full description

Saved in:
Bibliographic Details
Published in:Nature materials 2020-07, Vol.19 (7), p.781-788
Main Authors: Yao, Guangbao, Li, Jiang, Li, Qian, Chen, Xiaoliang, Liu, Xiaoguo, Wang, Fei, Qu, Zhibei, Ge, Zhilei, Narayanan, Raghu Pradeep, Williams, Dewight, Pei, Hao, Zuo, Xiaolei, Wang, Lihua, Yan, Hao, Feringa, Ben L., Fan, Chunhai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-422271c0ea5e8235c18f491e41080a849f3f3fed6d5cbfcf9a099b7d897a7eb73
cites cdi_FETCH-LOGICAL-c443t-422271c0ea5e8235c18f491e41080a849f3f3fed6d5cbfcf9a099b7d897a7eb73
container_end_page 788
container_issue 7
container_start_page 781
container_title Nature materials
container_volume 19
creator Yao, Guangbao
Li, Jiang
Li, Qian
Chen, Xiaoliang
Liu, Xiaoguo
Wang, Fei
Qu, Zhibei
Ge, Zhilei
Narayanan, Raghu Pradeep
Williams, Dewight
Pei, Hao
Zuo, Xiaolei
Wang, Lihua
Yan, Hao
Feringa, Ben L.
Fan, Chunhai
description Nature has evolved strategies to encode information within a single biopolymer to program biomolecular interactions with characteristic stoichiometry, orthogonality and reconfigurability. Nevertheless, synthetic approaches for programming molecular reactions or assembly generally rely on the use of multiple polymer chains (for example, patchy particles). Here we demonstrate a method for patterning colloidal gold nanoparticles with valence bond analogues using single-stranded DNA encoders containing polyadenine (polyA). By programming the order, length and sequence of each encoder with alternating polyA/non-polyA domains, we synthesize programmable atom-like nanoparticles (PANs) with n -valence that can be used to assemble a spectrum of low-coordination colloidal molecules with different composition, size, chirality and linearity. Moreover, by exploiting the reconfigurability of PANs, we demonstrate dynamic colloidal bond-breaking and bond-formation reactions, structural rearrangement and even the implementation of Boolean logic operations. This approach may be useful for generating responsive functional materials for distinct technological applications. Single-stranded DNA encoders containing polyadenine domains endow colloidal gold nanoparticles with programmable bond valence, orthogonality and reconfigurability, thus achieving post-synthetic control over colloidal structures.
doi_str_mv 10.1038/s41563-019-0549-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2475006580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2416034687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-422271c0ea5e8235c18f491e41080a849f3f3fed6d5cbfcf9a099b7d897a7eb73</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoVqs_wIsseI7mO9ljqR8VinrQc8gm2bplm63JVvHfm7JVT8ocZmCeeQceAM4wusSIqqvEMBcUIlxCxFkJ6R44wkwKyIRA-7sZY0JG4DilJUIEcy4OwYhiJSkh6gjMnmK3iGa1asKiCCZ0axP7xra-eDetD9YXVRdcKj6a_rVIGWo9TH00wXlXXD9Misx0zsd0Ag5q0yZ_uutj8HJ78zydwfnj3f10MoeWMdpDRgiR2CJvuFeEcotVzUrsGUYKGcXKmubyTjhuq9rWpUFlWUmnSmmkryQdg4shdx27t41PvV52mxjyS02Y5AgJrtD_FBaIMqG2WXigbOxSir7W69isTPzUGOmtYT0Y1tmw3hrWNN-c75I31cq7n4tvpRkgA5DyKix8_H39d-oXBmyFGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416034687</pqid></control><display><type>article</type><title>Programming nanoparticle valence bonds with single-stranded DNA encoders</title><source>Nature</source><creator>Yao, Guangbao ; Li, Jiang ; Li, Qian ; Chen, Xiaoliang ; Liu, Xiaoguo ; Wang, Fei ; Qu, Zhibei ; Ge, Zhilei ; Narayanan, Raghu Pradeep ; Williams, Dewight ; Pei, Hao ; Zuo, Xiaolei ; Wang, Lihua ; Yan, Hao ; Feringa, Ben L. ; Fan, Chunhai</creator><creatorcontrib>Yao, Guangbao ; Li, Jiang ; Li, Qian ; Chen, Xiaoliang ; Liu, Xiaoguo ; Wang, Fei ; Qu, Zhibei ; Ge, Zhilei ; Narayanan, Raghu Pradeep ; Williams, Dewight ; Pei, Hao ; Zuo, Xiaolei ; Wang, Lihua ; Yan, Hao ; Feringa, Ben L. ; Fan, Chunhai</creatorcontrib><description>Nature has evolved strategies to encode information within a single biopolymer to program biomolecular interactions with characteristic stoichiometry, orthogonality and reconfigurability. Nevertheless, synthetic approaches for programming molecular reactions or assembly generally rely on the use of multiple polymer chains (for example, patchy particles). Here we demonstrate a method for patterning colloidal gold nanoparticles with valence bond analogues using single-stranded DNA encoders containing polyadenine (polyA). By programming the order, length and sequence of each encoder with alternating polyA/non-polyA domains, we synthesize programmable atom-like nanoparticles (PANs) with n -valence that can be used to assemble a spectrum of low-coordination colloidal molecules with different composition, size, chirality and linearity. Moreover, by exploiting the reconfigurability of PANs, we demonstrate dynamic colloidal bond-breaking and bond-formation reactions, structural rearrangement and even the implementation of Boolean logic operations. This approach may be useful for generating responsive functional materials for distinct technological applications. Single-stranded DNA encoders containing polyadenine domains endow colloidal gold nanoparticles with programmable bond valence, orthogonality and reconfigurability, thus achieving post-synthetic control over colloidal structures.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-019-0549-3</identifier><identifier>PMID: 31873228</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357/341 ; 639/301/357/354 ; 639/301/357/551 ; 639/925/926/1050 ; Biomaterials ; Biopolymers ; Boolean algebra ; Chemical Engineering ; Chemistry and Materials Science ; Chirality ; Coders ; Colloids ; Colloids - chemistry ; Condensed Matter Physics ; Deoxyribonucleic acid ; DNA ; DNA, Single-Stranded - chemistry ; Domains ; Functional materials ; Gold ; Gold - chemistry ; Linearity ; Materials Science ; Metal Nanoparticles - chemistry ; Nanoparticles ; Nanotechnology ; Optical and Electronic Materials ; Orthogonality ; Polymers ; Programming ; Stoichiometry</subject><ispartof>Nature materials, 2020-07, Vol.19 (7), p.781-788</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-422271c0ea5e8235c18f491e41080a849f3f3fed6d5cbfcf9a099b7d897a7eb73</citedby><cites>FETCH-LOGICAL-c443t-422271c0ea5e8235c18f491e41080a849f3f3fed6d5cbfcf9a099b7d897a7eb73</cites><orcidid>0000-0002-7171-7338 ; 0000-0002-6885-6708 ; 0000-0002-7834-399X ; 0000-0003-0588-8435 ; 0000-0001-7184-7565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31873228$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Guangbao</creatorcontrib><creatorcontrib>Li, Jiang</creatorcontrib><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Chen, Xiaoliang</creatorcontrib><creatorcontrib>Liu, Xiaoguo</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Qu, Zhibei</creatorcontrib><creatorcontrib>Ge, Zhilei</creatorcontrib><creatorcontrib>Narayanan, Raghu Pradeep</creatorcontrib><creatorcontrib>Williams, Dewight</creatorcontrib><creatorcontrib>Pei, Hao</creatorcontrib><creatorcontrib>Zuo, Xiaolei</creatorcontrib><creatorcontrib>Wang, Lihua</creatorcontrib><creatorcontrib>Yan, Hao</creatorcontrib><creatorcontrib>Feringa, Ben L.</creatorcontrib><creatorcontrib>Fan, Chunhai</creatorcontrib><title>Programming nanoparticle valence bonds with single-stranded DNA encoders</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Nature has evolved strategies to encode information within a single biopolymer to program biomolecular interactions with characteristic stoichiometry, orthogonality and reconfigurability. Nevertheless, synthetic approaches for programming molecular reactions or assembly generally rely on the use of multiple polymer chains (for example, patchy particles). Here we demonstrate a method for patterning colloidal gold nanoparticles with valence bond analogues using single-stranded DNA encoders containing polyadenine (polyA). By programming the order, length and sequence of each encoder with alternating polyA/non-polyA domains, we synthesize programmable atom-like nanoparticles (PANs) with n -valence that can be used to assemble a spectrum of low-coordination colloidal molecules with different composition, size, chirality and linearity. Moreover, by exploiting the reconfigurability of PANs, we demonstrate dynamic colloidal bond-breaking and bond-formation reactions, structural rearrangement and even the implementation of Boolean logic operations. This approach may be useful for generating responsive functional materials for distinct technological applications. Single-stranded DNA encoders containing polyadenine domains endow colloidal gold nanoparticles with programmable bond valence, orthogonality and reconfigurability, thus achieving post-synthetic control over colloidal structures.</description><subject>639/301/357/341</subject><subject>639/301/357/354</subject><subject>639/301/357/551</subject><subject>639/925/926/1050</subject><subject>Biomaterials</subject><subject>Biopolymers</subject><subject>Boolean algebra</subject><subject>Chemical Engineering</subject><subject>Chemistry and Materials Science</subject><subject>Chirality</subject><subject>Coders</subject><subject>Colloids</subject><subject>Colloids - chemistry</subject><subject>Condensed Matter Physics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>Domains</subject><subject>Functional materials</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Linearity</subject><subject>Materials Science</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Orthogonality</subject><subject>Polymers</subject><subject>Programming</subject><subject>Stoichiometry</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoVqs_wIsseI7mO9ljqR8VinrQc8gm2bplm63JVvHfm7JVT8ocZmCeeQceAM4wusSIqqvEMBcUIlxCxFkJ6R44wkwKyIRA-7sZY0JG4DilJUIEcy4OwYhiJSkh6gjMnmK3iGa1asKiCCZ0axP7xra-eDetD9YXVRdcKj6a_rVIGWo9TH00wXlXXD9Misx0zsd0Ag5q0yZ_uutj8HJ78zydwfnj3f10MoeWMdpDRgiR2CJvuFeEcotVzUrsGUYKGcXKmubyTjhuq9rWpUFlWUmnSmmkryQdg4shdx27t41PvV52mxjyS02Y5AgJrtD_FBaIMqG2WXigbOxSir7W69isTPzUGOmtYT0Y1tmw3hrWNN-c75I31cq7n4tvpRkgA5DyKix8_H39d-oXBmyFGg</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Yao, Guangbao</creator><creator>Li, Jiang</creator><creator>Li, Qian</creator><creator>Chen, Xiaoliang</creator><creator>Liu, Xiaoguo</creator><creator>Wang, Fei</creator><creator>Qu, Zhibei</creator><creator>Ge, Zhilei</creator><creator>Narayanan, Raghu Pradeep</creator><creator>Williams, Dewight</creator><creator>Pei, Hao</creator><creator>Zuo, Xiaolei</creator><creator>Wang, Lihua</creator><creator>Yan, Hao</creator><creator>Feringa, Ben L.</creator><creator>Fan, Chunhai</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7171-7338</orcidid><orcidid>https://orcid.org/0000-0002-6885-6708</orcidid><orcidid>https://orcid.org/0000-0002-7834-399X</orcidid><orcidid>https://orcid.org/0000-0003-0588-8435</orcidid><orcidid>https://orcid.org/0000-0001-7184-7565</orcidid></search><sort><creationdate>20200701</creationdate><title>Programming nanoparticle valence bonds with single-stranded DNA encoders</title><author>Yao, Guangbao ; Li, Jiang ; Li, Qian ; Chen, Xiaoliang ; Liu, Xiaoguo ; Wang, Fei ; Qu, Zhibei ; Ge, Zhilei ; Narayanan, Raghu Pradeep ; Williams, Dewight ; Pei, Hao ; Zuo, Xiaolei ; Wang, Lihua ; Yan, Hao ; Feringa, Ben L. ; Fan, Chunhai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-422271c0ea5e8235c18f491e41080a849f3f3fed6d5cbfcf9a099b7d897a7eb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/357/341</topic><topic>639/301/357/354</topic><topic>639/301/357/551</topic><topic>639/925/926/1050</topic><topic>Biomaterials</topic><topic>Biopolymers</topic><topic>Boolean algebra</topic><topic>Chemical Engineering</topic><topic>Chemistry and Materials Science</topic><topic>Chirality</topic><topic>Coders</topic><topic>Colloids</topic><topic>Colloids - chemistry</topic><topic>Condensed Matter Physics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>Domains</topic><topic>Functional materials</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Linearity</topic><topic>Materials Science</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Orthogonality</topic><topic>Polymers</topic><topic>Programming</topic><topic>Stoichiometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Guangbao</creatorcontrib><creatorcontrib>Li, Jiang</creatorcontrib><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Chen, Xiaoliang</creatorcontrib><creatorcontrib>Liu, Xiaoguo</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Qu, Zhibei</creatorcontrib><creatorcontrib>Ge, Zhilei</creatorcontrib><creatorcontrib>Narayanan, Raghu Pradeep</creatorcontrib><creatorcontrib>Williams, Dewight</creatorcontrib><creatorcontrib>Pei, Hao</creatorcontrib><creatorcontrib>Zuo, Xiaolei</creatorcontrib><creatorcontrib>Wang, Lihua</creatorcontrib><creatorcontrib>Yan, Hao</creatorcontrib><creatorcontrib>Feringa, Ben L.</creatorcontrib><creatorcontrib>Fan, Chunhai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Guangbao</au><au>Li, Jiang</au><au>Li, Qian</au><au>Chen, Xiaoliang</au><au>Liu, Xiaoguo</au><au>Wang, Fei</au><au>Qu, Zhibei</au><au>Ge, Zhilei</au><au>Narayanan, Raghu Pradeep</au><au>Williams, Dewight</au><au>Pei, Hao</au><au>Zuo, Xiaolei</au><au>Wang, Lihua</au><au>Yan, Hao</au><au>Feringa, Ben L.</au><au>Fan, Chunhai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Programming nanoparticle valence bonds with single-stranded DNA encoders</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>19</volume><issue>7</issue><spage>781</spage><epage>788</epage><pages>781-788</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Nature has evolved strategies to encode information within a single biopolymer to program biomolecular interactions with characteristic stoichiometry, orthogonality and reconfigurability. Nevertheless, synthetic approaches for programming molecular reactions or assembly generally rely on the use of multiple polymer chains (for example, patchy particles). Here we demonstrate a method for patterning colloidal gold nanoparticles with valence bond analogues using single-stranded DNA encoders containing polyadenine (polyA). By programming the order, length and sequence of each encoder with alternating polyA/non-polyA domains, we synthesize programmable atom-like nanoparticles (PANs) with n -valence that can be used to assemble a spectrum of low-coordination colloidal molecules with different composition, size, chirality and linearity. Moreover, by exploiting the reconfigurability of PANs, we demonstrate dynamic colloidal bond-breaking and bond-formation reactions, structural rearrangement and even the implementation of Boolean logic operations. This approach may be useful for generating responsive functional materials for distinct technological applications. Single-stranded DNA encoders containing polyadenine domains endow colloidal gold nanoparticles with programmable bond valence, orthogonality and reconfigurability, thus achieving post-synthetic control over colloidal structures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31873228</pmid><doi>10.1038/s41563-019-0549-3</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7171-7338</orcidid><orcidid>https://orcid.org/0000-0002-6885-6708</orcidid><orcidid>https://orcid.org/0000-0002-7834-399X</orcidid><orcidid>https://orcid.org/0000-0003-0588-8435</orcidid><orcidid>https://orcid.org/0000-0001-7184-7565</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2020-07, Vol.19 (7), p.781-788
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_journals_2475006580
source Nature
subjects 639/301/357/341
639/301/357/354
639/301/357/551
639/925/926/1050
Biomaterials
Biopolymers
Boolean algebra
Chemical Engineering
Chemistry and Materials Science
Chirality
Coders
Colloids
Colloids - chemistry
Condensed Matter Physics
Deoxyribonucleic acid
DNA
DNA, Single-Stranded - chemistry
Domains
Functional materials
Gold
Gold - chemistry
Linearity
Materials Science
Metal Nanoparticles - chemistry
Nanoparticles
Nanotechnology
Optical and Electronic Materials
Orthogonality
Polymers
Programming
Stoichiometry
title Programming nanoparticle valence bonds with single-stranded DNA encoders
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A22%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Programming%20nanoparticle%20valence%20bonds%20with%20single-stranded%20DNA%20encoders&rft.jtitle=Nature%20materials&rft.au=Yao,%20Guangbao&rft.date=2020-07-01&rft.volume=19&rft.issue=7&rft.spage=781&rft.epage=788&rft.pages=781-788&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-019-0549-3&rft_dat=%3Cproquest_cross%3E2416034687%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-422271c0ea5e8235c18f491e41080a849f3f3fed6d5cbfcf9a099b7d897a7eb73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2416034687&rft_id=info:pmid/31873228&rfr_iscdi=true