Loading…
Programming nanoparticle valence bonds with single-stranded DNA encoders
Nature has evolved strategies to encode information within a single biopolymer to program biomolecular interactions with characteristic stoichiometry, orthogonality and reconfigurability. Nevertheless, synthetic approaches for programming molecular reactions or assembly generally rely on the use of...
Saved in:
Published in: | Nature materials 2020-07, Vol.19 (7), p.781-788 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-422271c0ea5e8235c18f491e41080a849f3f3fed6d5cbfcf9a099b7d897a7eb73 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-422271c0ea5e8235c18f491e41080a849f3f3fed6d5cbfcf9a099b7d897a7eb73 |
container_end_page | 788 |
container_issue | 7 |
container_start_page | 781 |
container_title | Nature materials |
container_volume | 19 |
creator | Yao, Guangbao Li, Jiang Li, Qian Chen, Xiaoliang Liu, Xiaoguo Wang, Fei Qu, Zhibei Ge, Zhilei Narayanan, Raghu Pradeep Williams, Dewight Pei, Hao Zuo, Xiaolei Wang, Lihua Yan, Hao Feringa, Ben L. Fan, Chunhai |
description | Nature has evolved strategies to encode information within a single biopolymer to program biomolecular interactions with characteristic stoichiometry, orthogonality and reconfigurability. Nevertheless, synthetic approaches for programming molecular reactions or assembly generally rely on the use of multiple polymer chains (for example, patchy particles). Here we demonstrate a method for patterning colloidal gold nanoparticles with valence bond analogues using single-stranded DNA encoders containing polyadenine (polyA). By programming the order, length and sequence of each encoder with alternating polyA/non-polyA domains, we synthesize programmable atom-like nanoparticles (PANs) with
n
-valence that can be used to assemble a spectrum of low-coordination colloidal molecules with different composition, size, chirality and linearity. Moreover, by exploiting the reconfigurability of PANs, we demonstrate dynamic colloidal bond-breaking and bond-formation reactions, structural rearrangement and even the implementation of Boolean logic operations. This approach may be useful for generating responsive functional materials for distinct technological applications.
Single-stranded DNA encoders containing polyadenine domains endow colloidal gold nanoparticles with programmable bond valence, orthogonality and reconfigurability, thus achieving post-synthetic control over colloidal structures. |
doi_str_mv | 10.1038/s41563-019-0549-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2475006580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2416034687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-422271c0ea5e8235c18f491e41080a849f3f3fed6d5cbfcf9a099b7d897a7eb73</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoVqs_wIsseI7mO9ljqR8VinrQc8gm2bplm63JVvHfm7JVT8ocZmCeeQceAM4wusSIqqvEMBcUIlxCxFkJ6R44wkwKyIRA-7sZY0JG4DilJUIEcy4OwYhiJSkh6gjMnmK3iGa1asKiCCZ0axP7xra-eDetD9YXVRdcKj6a_rVIGWo9TH00wXlXXD9Misx0zsd0Ag5q0yZ_uutj8HJ78zydwfnj3f10MoeWMdpDRgiR2CJvuFeEcotVzUrsGUYKGcXKmubyTjhuq9rWpUFlWUmnSmmkryQdg4shdx27t41PvV52mxjyS02Y5AgJrtD_FBaIMqG2WXigbOxSir7W69isTPzUGOmtYT0Y1tmw3hrWNN-c75I31cq7n4tvpRkgA5DyKix8_H39d-oXBmyFGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416034687</pqid></control><display><type>article</type><title>Programming nanoparticle valence bonds with single-stranded DNA encoders</title><source>Nature</source><creator>Yao, Guangbao ; Li, Jiang ; Li, Qian ; Chen, Xiaoliang ; Liu, Xiaoguo ; Wang, Fei ; Qu, Zhibei ; Ge, Zhilei ; Narayanan, Raghu Pradeep ; Williams, Dewight ; Pei, Hao ; Zuo, Xiaolei ; Wang, Lihua ; Yan, Hao ; Feringa, Ben L. ; Fan, Chunhai</creator><creatorcontrib>Yao, Guangbao ; Li, Jiang ; Li, Qian ; Chen, Xiaoliang ; Liu, Xiaoguo ; Wang, Fei ; Qu, Zhibei ; Ge, Zhilei ; Narayanan, Raghu Pradeep ; Williams, Dewight ; Pei, Hao ; Zuo, Xiaolei ; Wang, Lihua ; Yan, Hao ; Feringa, Ben L. ; Fan, Chunhai</creatorcontrib><description>Nature has evolved strategies to encode information within a single biopolymer to program biomolecular interactions with characteristic stoichiometry, orthogonality and reconfigurability. Nevertheless, synthetic approaches for programming molecular reactions or assembly generally rely on the use of multiple polymer chains (for example, patchy particles). Here we demonstrate a method for patterning colloidal gold nanoparticles with valence bond analogues using single-stranded DNA encoders containing polyadenine (polyA). By programming the order, length and sequence of each encoder with alternating polyA/non-polyA domains, we synthesize programmable atom-like nanoparticles (PANs) with
n
-valence that can be used to assemble a spectrum of low-coordination colloidal molecules with different composition, size, chirality and linearity. Moreover, by exploiting the reconfigurability of PANs, we demonstrate dynamic colloidal bond-breaking and bond-formation reactions, structural rearrangement and even the implementation of Boolean logic operations. This approach may be useful for generating responsive functional materials for distinct technological applications.
Single-stranded DNA encoders containing polyadenine domains endow colloidal gold nanoparticles with programmable bond valence, orthogonality and reconfigurability, thus achieving post-synthetic control over colloidal structures.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-019-0549-3</identifier><identifier>PMID: 31873228</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357/341 ; 639/301/357/354 ; 639/301/357/551 ; 639/925/926/1050 ; Biomaterials ; Biopolymers ; Boolean algebra ; Chemical Engineering ; Chemistry and Materials Science ; Chirality ; Coders ; Colloids ; Colloids - chemistry ; Condensed Matter Physics ; Deoxyribonucleic acid ; DNA ; DNA, Single-Stranded - chemistry ; Domains ; Functional materials ; Gold ; Gold - chemistry ; Linearity ; Materials Science ; Metal Nanoparticles - chemistry ; Nanoparticles ; Nanotechnology ; Optical and Electronic Materials ; Orthogonality ; Polymers ; Programming ; Stoichiometry</subject><ispartof>Nature materials, 2020-07, Vol.19 (7), p.781-788</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-422271c0ea5e8235c18f491e41080a849f3f3fed6d5cbfcf9a099b7d897a7eb73</citedby><cites>FETCH-LOGICAL-c443t-422271c0ea5e8235c18f491e41080a849f3f3fed6d5cbfcf9a099b7d897a7eb73</cites><orcidid>0000-0002-7171-7338 ; 0000-0002-6885-6708 ; 0000-0002-7834-399X ; 0000-0003-0588-8435 ; 0000-0001-7184-7565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31873228$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Guangbao</creatorcontrib><creatorcontrib>Li, Jiang</creatorcontrib><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Chen, Xiaoliang</creatorcontrib><creatorcontrib>Liu, Xiaoguo</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Qu, Zhibei</creatorcontrib><creatorcontrib>Ge, Zhilei</creatorcontrib><creatorcontrib>Narayanan, Raghu Pradeep</creatorcontrib><creatorcontrib>Williams, Dewight</creatorcontrib><creatorcontrib>Pei, Hao</creatorcontrib><creatorcontrib>Zuo, Xiaolei</creatorcontrib><creatorcontrib>Wang, Lihua</creatorcontrib><creatorcontrib>Yan, Hao</creatorcontrib><creatorcontrib>Feringa, Ben L.</creatorcontrib><creatorcontrib>Fan, Chunhai</creatorcontrib><title>Programming nanoparticle valence bonds with single-stranded DNA encoders</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Nature has evolved strategies to encode information within a single biopolymer to program biomolecular interactions with characteristic stoichiometry, orthogonality and reconfigurability. Nevertheless, synthetic approaches for programming molecular reactions or assembly generally rely on the use of multiple polymer chains (for example, patchy particles). Here we demonstrate a method for patterning colloidal gold nanoparticles with valence bond analogues using single-stranded DNA encoders containing polyadenine (polyA). By programming the order, length and sequence of each encoder with alternating polyA/non-polyA domains, we synthesize programmable atom-like nanoparticles (PANs) with
n
-valence that can be used to assemble a spectrum of low-coordination colloidal molecules with different composition, size, chirality and linearity. Moreover, by exploiting the reconfigurability of PANs, we demonstrate dynamic colloidal bond-breaking and bond-formation reactions, structural rearrangement and even the implementation of Boolean logic operations. This approach may be useful for generating responsive functional materials for distinct technological applications.
Single-stranded DNA encoders containing polyadenine domains endow colloidal gold nanoparticles with programmable bond valence, orthogonality and reconfigurability, thus achieving post-synthetic control over colloidal structures.</description><subject>639/301/357/341</subject><subject>639/301/357/354</subject><subject>639/301/357/551</subject><subject>639/925/926/1050</subject><subject>Biomaterials</subject><subject>Biopolymers</subject><subject>Boolean algebra</subject><subject>Chemical Engineering</subject><subject>Chemistry and Materials Science</subject><subject>Chirality</subject><subject>Coders</subject><subject>Colloids</subject><subject>Colloids - chemistry</subject><subject>Condensed Matter Physics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>Domains</subject><subject>Functional materials</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Linearity</subject><subject>Materials Science</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Orthogonality</subject><subject>Polymers</subject><subject>Programming</subject><subject>Stoichiometry</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoVqs_wIsseI7mO9ljqR8VinrQc8gm2bplm63JVvHfm7JVT8ocZmCeeQceAM4wusSIqqvEMBcUIlxCxFkJ6R44wkwKyIRA-7sZY0JG4DilJUIEcy4OwYhiJSkh6gjMnmK3iGa1asKiCCZ0axP7xra-eDetD9YXVRdcKj6a_rVIGWo9TH00wXlXXD9Misx0zsd0Ag5q0yZ_uutj8HJ78zydwfnj3f10MoeWMdpDRgiR2CJvuFeEcotVzUrsGUYKGcXKmubyTjhuq9rWpUFlWUmnSmmkryQdg4shdx27t41PvV52mxjyS02Y5AgJrtD_FBaIMqG2WXigbOxSir7W69isTPzUGOmtYT0Y1tmw3hrWNN-c75I31cq7n4tvpRkgA5DyKix8_H39d-oXBmyFGg</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Yao, Guangbao</creator><creator>Li, Jiang</creator><creator>Li, Qian</creator><creator>Chen, Xiaoliang</creator><creator>Liu, Xiaoguo</creator><creator>Wang, Fei</creator><creator>Qu, Zhibei</creator><creator>Ge, Zhilei</creator><creator>Narayanan, Raghu Pradeep</creator><creator>Williams, Dewight</creator><creator>Pei, Hao</creator><creator>Zuo, Xiaolei</creator><creator>Wang, Lihua</creator><creator>Yan, Hao</creator><creator>Feringa, Ben L.</creator><creator>Fan, Chunhai</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7171-7338</orcidid><orcidid>https://orcid.org/0000-0002-6885-6708</orcidid><orcidid>https://orcid.org/0000-0002-7834-399X</orcidid><orcidid>https://orcid.org/0000-0003-0588-8435</orcidid><orcidid>https://orcid.org/0000-0001-7184-7565</orcidid></search><sort><creationdate>20200701</creationdate><title>Programming nanoparticle valence bonds with single-stranded DNA encoders</title><author>Yao, Guangbao ; Li, Jiang ; Li, Qian ; Chen, Xiaoliang ; Liu, Xiaoguo ; Wang, Fei ; Qu, Zhibei ; Ge, Zhilei ; Narayanan, Raghu Pradeep ; Williams, Dewight ; Pei, Hao ; Zuo, Xiaolei ; Wang, Lihua ; Yan, Hao ; Feringa, Ben L. ; Fan, Chunhai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-422271c0ea5e8235c18f491e41080a849f3f3fed6d5cbfcf9a099b7d897a7eb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/357/341</topic><topic>639/301/357/354</topic><topic>639/301/357/551</topic><topic>639/925/926/1050</topic><topic>Biomaterials</topic><topic>Biopolymers</topic><topic>Boolean algebra</topic><topic>Chemical Engineering</topic><topic>Chemistry and Materials Science</topic><topic>Chirality</topic><topic>Coders</topic><topic>Colloids</topic><topic>Colloids - chemistry</topic><topic>Condensed Matter Physics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>Domains</topic><topic>Functional materials</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Linearity</topic><topic>Materials Science</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Orthogonality</topic><topic>Polymers</topic><topic>Programming</topic><topic>Stoichiometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Guangbao</creatorcontrib><creatorcontrib>Li, Jiang</creatorcontrib><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Chen, Xiaoliang</creatorcontrib><creatorcontrib>Liu, Xiaoguo</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Qu, Zhibei</creatorcontrib><creatorcontrib>Ge, Zhilei</creatorcontrib><creatorcontrib>Narayanan, Raghu Pradeep</creatorcontrib><creatorcontrib>Williams, Dewight</creatorcontrib><creatorcontrib>Pei, Hao</creatorcontrib><creatorcontrib>Zuo, Xiaolei</creatorcontrib><creatorcontrib>Wang, Lihua</creatorcontrib><creatorcontrib>Yan, Hao</creatorcontrib><creatorcontrib>Feringa, Ben L.</creatorcontrib><creatorcontrib>Fan, Chunhai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Guangbao</au><au>Li, Jiang</au><au>Li, Qian</au><au>Chen, Xiaoliang</au><au>Liu, Xiaoguo</au><au>Wang, Fei</au><au>Qu, Zhibei</au><au>Ge, Zhilei</au><au>Narayanan, Raghu Pradeep</au><au>Williams, Dewight</au><au>Pei, Hao</au><au>Zuo, Xiaolei</au><au>Wang, Lihua</au><au>Yan, Hao</au><au>Feringa, Ben L.</au><au>Fan, Chunhai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Programming nanoparticle valence bonds with single-stranded DNA encoders</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>19</volume><issue>7</issue><spage>781</spage><epage>788</epage><pages>781-788</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Nature has evolved strategies to encode information within a single biopolymer to program biomolecular interactions with characteristic stoichiometry, orthogonality and reconfigurability. Nevertheless, synthetic approaches for programming molecular reactions or assembly generally rely on the use of multiple polymer chains (for example, patchy particles). Here we demonstrate a method for patterning colloidal gold nanoparticles with valence bond analogues using single-stranded DNA encoders containing polyadenine (polyA). By programming the order, length and sequence of each encoder with alternating polyA/non-polyA domains, we synthesize programmable atom-like nanoparticles (PANs) with
n
-valence that can be used to assemble a spectrum of low-coordination colloidal molecules with different composition, size, chirality and linearity. Moreover, by exploiting the reconfigurability of PANs, we demonstrate dynamic colloidal bond-breaking and bond-formation reactions, structural rearrangement and even the implementation of Boolean logic operations. This approach may be useful for generating responsive functional materials for distinct technological applications.
Single-stranded DNA encoders containing polyadenine domains endow colloidal gold nanoparticles with programmable bond valence, orthogonality and reconfigurability, thus achieving post-synthetic control over colloidal structures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31873228</pmid><doi>10.1038/s41563-019-0549-3</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7171-7338</orcidid><orcidid>https://orcid.org/0000-0002-6885-6708</orcidid><orcidid>https://orcid.org/0000-0002-7834-399X</orcidid><orcidid>https://orcid.org/0000-0003-0588-8435</orcidid><orcidid>https://orcid.org/0000-0001-7184-7565</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2020-07, Vol.19 (7), p.781-788 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_journals_2475006580 |
source | Nature |
subjects | 639/301/357/341 639/301/357/354 639/301/357/551 639/925/926/1050 Biomaterials Biopolymers Boolean algebra Chemical Engineering Chemistry and Materials Science Chirality Coders Colloids Colloids - chemistry Condensed Matter Physics Deoxyribonucleic acid DNA DNA, Single-Stranded - chemistry Domains Functional materials Gold Gold - chemistry Linearity Materials Science Metal Nanoparticles - chemistry Nanoparticles Nanotechnology Optical and Electronic Materials Orthogonality Polymers Programming Stoichiometry |
title | Programming nanoparticle valence bonds with single-stranded DNA encoders |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A22%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Programming%20nanoparticle%20valence%20bonds%20with%20single-stranded%20DNA%20encoders&rft.jtitle=Nature%20materials&rft.au=Yao,%20Guangbao&rft.date=2020-07-01&rft.volume=19&rft.issue=7&rft.spage=781&rft.epage=788&rft.pages=781-788&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-019-0549-3&rft_dat=%3Cproquest_cross%3E2416034687%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-422271c0ea5e8235c18f491e41080a849f3f3fed6d5cbfcf9a099b7d897a7eb73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2416034687&rft_id=info:pmid/31873228&rfr_iscdi=true |