Loading…
Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination
Deep-blue light-emitting diodes (LEDs) (emitting at wavelengths of less than 450 nm) are important for solid-state lighting, vivid displays and high-density information storage. Colloidal quantum dots, typically based on heavy metals such as cadmium and lead, are promising candidates for deep-blue L...
Saved in:
Published in: | Nature photonics 2020-03, Vol.14 (3), p.171-176 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Deep-blue light-emitting diodes (LEDs) (emitting at wavelengths of less than 450 nm) are important for solid-state lighting, vivid displays and high-density information storage. Colloidal quantum dots, typically based on heavy metals such as cadmium and lead, are promising candidates for deep-blue LEDs, but these have so far had external quantum efficiencies lower than 1.7%. Here we present deep-blue light-emitting materials and devices based on carbon dots. The carbon dots produce emission with a narrow full-width at half-maximum (about 35 nm) with high photoluminescence quantum yield (70% ± 10%) and a colour coordinate (0.15, 0.05) closely approaching the standard colour Rec. 2020 (0.131, 0.046) specification. Structural and optical characterization, together with computational studies, reveal that amine-based passivation accounts for the efficient and high-colour-purity emission. Deep-blue LEDs based on these carbon dots display high performance with a maximum luminance of 5,240 cd m
−2
and an external quantum efficiency of 4%, notably exceeding that of previously reported quantum-tuned solution-processed deep-blue LEDs.
Deep-blue high-colour-purity light-emitting materials are developed by using amine-based edge passivation. The light-emitting diodes based on the carbon dots exhibit a maximum luminance of 5,240 cd m
–2
and an external quantum efficiency of 4%. |
---|---|
ISSN: | 1749-4885 1749-4893 |
DOI: | 10.1038/s41566-019-0557-5 |