Loading…

A Numerical Study on the Performance of a Magnesium-Based Automotive Cooling Fan with Bead Structure

This paper presents the numerical analysis of three types of magnesium-based, axial-flow automotive cooling fans. The numerical modeling is conducted for geometrically modified fan designs with and without bead structure. The effect of geometric modifications of the fan blades on the fan performance...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Applied Fluid Mechanics 2021-01, Vol.14 (1), p.11-21
Main Authors: Hur, K H, Haider, B A, Sohn, C H
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-aaa65ef91c4e21a8d08898387f61c8492feabd5a858b3f26339de530f72845983
cites
container_end_page 21
container_issue 1
container_start_page 11
container_title Journal of Applied Fluid Mechanics
container_volume 14
creator Hur, K H
Haider, B A
Sohn, C H
description This paper presents the numerical analysis of three types of magnesium-based, axial-flow automotive cooling fans. The numerical modeling is conducted for geometrically modified fan designs with and without bead structure. The effect of geometric modifications of the fan blades on the fan performances (P-Q curve), fan efficiency, and energy efficiency is investigated using unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with the sliding mesh methodology. The baseline fan having no-beads is fabricated using 3D printing technology and tested to measure the flow velocity and volumetric flow rate which shows good agreement to the numerical results. Subsequently, fans with beads are further optimized to achieve a significant increase in fan performances. To investigate the fan vibrations, modal analysis is also carried out using magnesium-alloy AZ31 as the fan material. The modal analysis gives natural frequencies of all types of fans which are beyond the fan rotational frequency and seems satisfactory.
doi_str_mv 10.47176/jafm.14.01.31222
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2475106071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f1234db77bea40ea9359dc1f5b0252b0</doaj_id><sourcerecordid>2475106071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-aaa65ef91c4e21a8d08898387f61c8492feabd5a858b3f26339de530f72845983</originalsourceid><addsrcrecordid>eNo9kU1v1DAQhiMEElXbH8DNEucsHn_EznG7olCpBSTgbE3s8darTVwcB9R_T9gFTvNq9OiZkd6meQN8owyY7t0B47gBteGwkSCEeNFcgJG6lZ3SL_9lbcTr5nqe08CVMkpK0180Ycs-LSOV5PHIvtYlPLM8sfpI7AuVmMuIkyeWI0P2gPuJ5rSM7Q3OFNh2qXnMNf0ktsv5mKY9u8WJ_Ur1kd0QhlVXFl-XQlfNq4jHma7_zsvm--37b7uP7f3nD3e77X3rpRW1RcROU-zBKxKANnBreyutiR14q3oRCYeg0Wo7yCg6KftAWvJohFV6JS-bu7M3ZDy4p5JGLM8uY3KnRS57h6UmfyQXQUgVBmMGQsUJe6n74CHqgQstBr663p5dTyX_WGiu7pCXMq3vO6GMBt5xAysFZ8qXPM-F4v-rwN2pG_enGwfKcXCnbuRvwA-Bjw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475106071</pqid></control><display><type>article</type><title>A Numerical Study on the Performance of a Magnesium-Based Automotive Cooling Fan with Bead Structure</title><source>Publicly Available Content Database</source><creator>Hur, K H ; Haider, B A ; Sohn, C H</creator><creatorcontrib>Hur, K H ; Haider, B A ; Sohn, C H</creatorcontrib><description>This paper presents the numerical analysis of three types of magnesium-based, axial-flow automotive cooling fans. The numerical modeling is conducted for geometrically modified fan designs with and without bead structure. The effect of geometric modifications of the fan blades on the fan performances (P-Q curve), fan efficiency, and energy efficiency is investigated using unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with the sliding mesh methodology. The baseline fan having no-beads is fabricated using 3D printing technology and tested to measure the flow velocity and volumetric flow rate which shows good agreement to the numerical results. Subsequently, fans with beads are further optimized to achieve a significant increase in fan performances. To investigate the fan vibrations, modal analysis is also carried out using magnesium-alloy AZ31 as the fan material. The modal analysis gives natural frequencies of all types of fans which are beyond the fan rotational frequency and seems satisfactory.</description><identifier>ISSN: 1735-3572</identifier><identifier>EISSN: 1735-3645</identifier><identifier>DOI: 10.47176/jafm.14.01.31222</identifier><language>eng</language><publisher>Isfahan: Isfahan University of Technology</publisher><subject>Axial flow ; axial-flow cooling fan; bead structure; cfd; fan performance; modal analysis; passive control ; Beads ; Computational fluid dynamics ; Cooling ; Energy efficiency ; Fan blades ; Finite element method ; Flow rates ; Flow velocity ; Magnesium ; Magnesium base alloys ; Modal analysis ; Numerical analysis ; Resonant frequencies ; Reynolds averaged Navier-Stokes method ; Three dimensional printing ; Vibrations</subject><ispartof>Journal of Applied Fluid Mechanics, 2021-01, Vol.14 (1), p.11-21</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-aaa65ef91c4e21a8d08898387f61c8492feabd5a858b3f26339de530f72845983</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2475106071?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Hur, K H</creatorcontrib><creatorcontrib>Haider, B A</creatorcontrib><creatorcontrib>Sohn, C H</creatorcontrib><title>A Numerical Study on the Performance of a Magnesium-Based Automotive Cooling Fan with Bead Structure</title><title>Journal of Applied Fluid Mechanics</title><description>This paper presents the numerical analysis of three types of magnesium-based, axial-flow automotive cooling fans. The numerical modeling is conducted for geometrically modified fan designs with and without bead structure. The effect of geometric modifications of the fan blades on the fan performances (P-Q curve), fan efficiency, and energy efficiency is investigated using unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with the sliding mesh methodology. The baseline fan having no-beads is fabricated using 3D printing technology and tested to measure the flow velocity and volumetric flow rate which shows good agreement to the numerical results. Subsequently, fans with beads are further optimized to achieve a significant increase in fan performances. To investigate the fan vibrations, modal analysis is also carried out using magnesium-alloy AZ31 as the fan material. The modal analysis gives natural frequencies of all types of fans which are beyond the fan rotational frequency and seems satisfactory.</description><subject>Axial flow</subject><subject>axial-flow cooling fan; bead structure; cfd; fan performance; modal analysis; passive control</subject><subject>Beads</subject><subject>Computational fluid dynamics</subject><subject>Cooling</subject><subject>Energy efficiency</subject><subject>Fan blades</subject><subject>Finite element method</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Magnesium</subject><subject>Magnesium base alloys</subject><subject>Modal analysis</subject><subject>Numerical analysis</subject><subject>Resonant frequencies</subject><subject>Reynolds averaged Navier-Stokes method</subject><subject>Three dimensional printing</subject><subject>Vibrations</subject><issn>1735-3572</issn><issn>1735-3645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNo9kU1v1DAQhiMEElXbH8DNEucsHn_EznG7olCpBSTgbE3s8darTVwcB9R_T9gFTvNq9OiZkd6meQN8owyY7t0B47gBteGwkSCEeNFcgJG6lZ3SL_9lbcTr5nqe08CVMkpK0180Ycs-LSOV5PHIvtYlPLM8sfpI7AuVmMuIkyeWI0P2gPuJ5rSM7Q3OFNh2qXnMNf0ktsv5mKY9u8WJ_Ur1kd0QhlVXFl-XQlfNq4jHma7_zsvm--37b7uP7f3nD3e77X3rpRW1RcROU-zBKxKANnBreyutiR14q3oRCYeg0Wo7yCg6KftAWvJohFV6JS-bu7M3ZDy4p5JGLM8uY3KnRS57h6UmfyQXQUgVBmMGQsUJe6n74CHqgQstBr663p5dTyX_WGiu7pCXMq3vO6GMBt5xAysFZ8qXPM-F4v-rwN2pG_enGwfKcXCnbuRvwA-Bjw</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Hur, K H</creator><creator>Haider, B A</creator><creator>Sohn, C H</creator><general>Isfahan University of Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20210101</creationdate><title>A Numerical Study on the Performance of a Magnesium-Based Automotive Cooling Fan with Bead Structure</title><author>Hur, K H ; Haider, B A ; Sohn, C H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-aaa65ef91c4e21a8d08898387f61c8492feabd5a858b3f26339de530f72845983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Axial flow</topic><topic>axial-flow cooling fan; bead structure; cfd; fan performance; modal analysis; passive control</topic><topic>Beads</topic><topic>Computational fluid dynamics</topic><topic>Cooling</topic><topic>Energy efficiency</topic><topic>Fan blades</topic><topic>Finite element method</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Magnesium</topic><topic>Magnesium base alloys</topic><topic>Modal analysis</topic><topic>Numerical analysis</topic><topic>Resonant frequencies</topic><topic>Reynolds averaged Navier-Stokes method</topic><topic>Three dimensional printing</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hur, K H</creatorcontrib><creatorcontrib>Haider, B A</creatorcontrib><creatorcontrib>Sohn, C H</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Applied Fluid Mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hur, K H</au><au>Haider, B A</au><au>Sohn, C H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Numerical Study on the Performance of a Magnesium-Based Automotive Cooling Fan with Bead Structure</atitle><jtitle>Journal of Applied Fluid Mechanics</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>14</volume><issue>1</issue><spage>11</spage><epage>21</epage><pages>11-21</pages><issn>1735-3572</issn><eissn>1735-3645</eissn><abstract>This paper presents the numerical analysis of three types of magnesium-based, axial-flow automotive cooling fans. The numerical modeling is conducted for geometrically modified fan designs with and without bead structure. The effect of geometric modifications of the fan blades on the fan performances (P-Q curve), fan efficiency, and energy efficiency is investigated using unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with the sliding mesh methodology. The baseline fan having no-beads is fabricated using 3D printing technology and tested to measure the flow velocity and volumetric flow rate which shows good agreement to the numerical results. Subsequently, fans with beads are further optimized to achieve a significant increase in fan performances. To investigate the fan vibrations, modal analysis is also carried out using magnesium-alloy AZ31 as the fan material. The modal analysis gives natural frequencies of all types of fans which are beyond the fan rotational frequency and seems satisfactory.</abstract><cop>Isfahan</cop><pub>Isfahan University of Technology</pub><doi>10.47176/jafm.14.01.31222</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1735-3572
ispartof Journal of Applied Fluid Mechanics, 2021-01, Vol.14 (1), p.11-21
issn 1735-3572
1735-3645
language eng
recordid cdi_proquest_journals_2475106071
source Publicly Available Content Database
subjects Axial flow
axial-flow cooling fan
bead structure
cfd
fan performance
modal analysis
passive control
Beads
Computational fluid dynamics
Cooling
Energy efficiency
Fan blades
Finite element method
Flow rates
Flow velocity
Magnesium
Magnesium base alloys
Modal analysis
Numerical analysis
Resonant frequencies
Reynolds averaged Navier-Stokes method
Three dimensional printing
Vibrations
title A Numerical Study on the Performance of a Magnesium-Based Automotive Cooling Fan with Bead Structure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Numerical%20Study%20on%20the%20Performance%20of%20a%20Magnesium-Based%20Automotive%20Cooling%20Fan%20with%20Bead%20Structure&rft.jtitle=Journal%20of%20Applied%20Fluid%20Mechanics&rft.au=Hur,%20K%20H&rft.date=2021-01-01&rft.volume=14&rft.issue=1&rft.spage=11&rft.epage=21&rft.pages=11-21&rft.issn=1735-3572&rft.eissn=1735-3645&rft_id=info:doi/10.47176/jafm.14.01.31222&rft_dat=%3Cproquest_doaj_%3E2475106071%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-aaa65ef91c4e21a8d08898387f61c8492feabd5a858b3f26339de530f72845983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2475106071&rft_id=info:pmid/&rfr_iscdi=true