Loading…
A Numerical Study on the Performance of a Magnesium-Based Automotive Cooling Fan with Bead Structure
This paper presents the numerical analysis of three types of magnesium-based, axial-flow automotive cooling fans. The numerical modeling is conducted for geometrically modified fan designs with and without bead structure. The effect of geometric modifications of the fan blades on the fan performance...
Saved in:
Published in: | Journal of Applied Fluid Mechanics 2021-01, Vol.14 (1), p.11-21 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-aaa65ef91c4e21a8d08898387f61c8492feabd5a858b3f26339de530f72845983 |
---|---|
cites | |
container_end_page | 21 |
container_issue | 1 |
container_start_page | 11 |
container_title | Journal of Applied Fluid Mechanics |
container_volume | 14 |
creator | Hur, K H Haider, B A Sohn, C H |
description | This paper presents the numerical analysis of three types of magnesium-based, axial-flow automotive cooling fans. The numerical modeling is conducted for geometrically modified fan designs with and without bead structure. The effect of geometric modifications of the fan blades on the fan performances (P-Q curve), fan efficiency, and energy efficiency is investigated using unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with the sliding mesh methodology. The baseline fan having no-beads is fabricated using 3D printing technology and tested to measure the flow velocity and volumetric flow rate which shows good agreement to the numerical results. Subsequently, fans with beads are further optimized to achieve a significant increase in fan performances. To investigate the fan vibrations, modal analysis is also carried out using magnesium-alloy AZ31 as the fan material. The modal analysis gives natural frequencies of all types of fans which are beyond the fan rotational frequency and seems satisfactory. |
doi_str_mv | 10.47176/jafm.14.01.31222 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2475106071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f1234db77bea40ea9359dc1f5b0252b0</doaj_id><sourcerecordid>2475106071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-aaa65ef91c4e21a8d08898387f61c8492feabd5a858b3f26339de530f72845983</originalsourceid><addsrcrecordid>eNo9kU1v1DAQhiMEElXbH8DNEucsHn_EznG7olCpBSTgbE3s8darTVwcB9R_T9gFTvNq9OiZkd6meQN8owyY7t0B47gBteGwkSCEeNFcgJG6lZ3SL_9lbcTr5nqe08CVMkpK0180Ycs-LSOV5PHIvtYlPLM8sfpI7AuVmMuIkyeWI0P2gPuJ5rSM7Q3OFNh2qXnMNf0ktsv5mKY9u8WJ_Ur1kd0QhlVXFl-XQlfNq4jHma7_zsvm--37b7uP7f3nD3e77X3rpRW1RcROU-zBKxKANnBreyutiR14q3oRCYeg0Wo7yCg6KftAWvJohFV6JS-bu7M3ZDy4p5JGLM8uY3KnRS57h6UmfyQXQUgVBmMGQsUJe6n74CHqgQstBr663p5dTyX_WGiu7pCXMq3vO6GMBt5xAysFZ8qXPM-F4v-rwN2pG_enGwfKcXCnbuRvwA-Bjw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475106071</pqid></control><display><type>article</type><title>A Numerical Study on the Performance of a Magnesium-Based Automotive Cooling Fan with Bead Structure</title><source>Publicly Available Content Database</source><creator>Hur, K H ; Haider, B A ; Sohn, C H</creator><creatorcontrib>Hur, K H ; Haider, B A ; Sohn, C H</creatorcontrib><description>This paper presents the numerical analysis of three types of magnesium-based, axial-flow automotive cooling fans. The numerical modeling is conducted for geometrically modified fan designs with and without bead structure. The effect of geometric modifications of the fan blades on the fan performances (P-Q curve), fan efficiency, and energy efficiency is investigated using unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with the sliding mesh methodology. The baseline fan having no-beads is fabricated using 3D printing technology and tested to measure the flow velocity and volumetric flow rate which shows good agreement to the numerical results. Subsequently, fans with beads are further optimized to achieve a significant increase in fan performances. To investigate the fan vibrations, modal analysis is also carried out using magnesium-alloy AZ31 as the fan material. The modal analysis gives natural frequencies of all types of fans which are beyond the fan rotational frequency and seems satisfactory.</description><identifier>ISSN: 1735-3572</identifier><identifier>EISSN: 1735-3645</identifier><identifier>DOI: 10.47176/jafm.14.01.31222</identifier><language>eng</language><publisher>Isfahan: Isfahan University of Technology</publisher><subject>Axial flow ; axial-flow cooling fan; bead structure; cfd; fan performance; modal analysis; passive control ; Beads ; Computational fluid dynamics ; Cooling ; Energy efficiency ; Fan blades ; Finite element method ; Flow rates ; Flow velocity ; Magnesium ; Magnesium base alloys ; Modal analysis ; Numerical analysis ; Resonant frequencies ; Reynolds averaged Navier-Stokes method ; Three dimensional printing ; Vibrations</subject><ispartof>Journal of Applied Fluid Mechanics, 2021-01, Vol.14 (1), p.11-21</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-aaa65ef91c4e21a8d08898387f61c8492feabd5a858b3f26339de530f72845983</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2475106071?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Hur, K H</creatorcontrib><creatorcontrib>Haider, B A</creatorcontrib><creatorcontrib>Sohn, C H</creatorcontrib><title>A Numerical Study on the Performance of a Magnesium-Based Automotive Cooling Fan with Bead Structure</title><title>Journal of Applied Fluid Mechanics</title><description>This paper presents the numerical analysis of three types of magnesium-based, axial-flow automotive cooling fans. The numerical modeling is conducted for geometrically modified fan designs with and without bead structure. The effect of geometric modifications of the fan blades on the fan performances (P-Q curve), fan efficiency, and energy efficiency is investigated using unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with the sliding mesh methodology. The baseline fan having no-beads is fabricated using 3D printing technology and tested to measure the flow velocity and volumetric flow rate which shows good agreement to the numerical results. Subsequently, fans with beads are further optimized to achieve a significant increase in fan performances. To investigate the fan vibrations, modal analysis is also carried out using magnesium-alloy AZ31 as the fan material. The modal analysis gives natural frequencies of all types of fans which are beyond the fan rotational frequency and seems satisfactory.</description><subject>Axial flow</subject><subject>axial-flow cooling fan; bead structure; cfd; fan performance; modal analysis; passive control</subject><subject>Beads</subject><subject>Computational fluid dynamics</subject><subject>Cooling</subject><subject>Energy efficiency</subject><subject>Fan blades</subject><subject>Finite element method</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Magnesium</subject><subject>Magnesium base alloys</subject><subject>Modal analysis</subject><subject>Numerical analysis</subject><subject>Resonant frequencies</subject><subject>Reynolds averaged Navier-Stokes method</subject><subject>Three dimensional printing</subject><subject>Vibrations</subject><issn>1735-3572</issn><issn>1735-3645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNo9kU1v1DAQhiMEElXbH8DNEucsHn_EznG7olCpBSTgbE3s8darTVwcB9R_T9gFTvNq9OiZkd6meQN8owyY7t0B47gBteGwkSCEeNFcgJG6lZ3SL_9lbcTr5nqe08CVMkpK0180Ycs-LSOV5PHIvtYlPLM8sfpI7AuVmMuIkyeWI0P2gPuJ5rSM7Q3OFNh2qXnMNf0ktsv5mKY9u8WJ_Ur1kd0QhlVXFl-XQlfNq4jHma7_zsvm--37b7uP7f3nD3e77X3rpRW1RcROU-zBKxKANnBreyutiR14q3oRCYeg0Wo7yCg6KftAWvJohFV6JS-bu7M3ZDy4p5JGLM8uY3KnRS57h6UmfyQXQUgVBmMGQsUJe6n74CHqgQstBr663p5dTyX_WGiu7pCXMq3vO6GMBt5xAysFZ8qXPM-F4v-rwN2pG_enGwfKcXCnbuRvwA-Bjw</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Hur, K H</creator><creator>Haider, B A</creator><creator>Sohn, C H</creator><general>Isfahan University of Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20210101</creationdate><title>A Numerical Study on the Performance of a Magnesium-Based Automotive Cooling Fan with Bead Structure</title><author>Hur, K H ; Haider, B A ; Sohn, C H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-aaa65ef91c4e21a8d08898387f61c8492feabd5a858b3f26339de530f72845983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Axial flow</topic><topic>axial-flow cooling fan; bead structure; cfd; fan performance; modal analysis; passive control</topic><topic>Beads</topic><topic>Computational fluid dynamics</topic><topic>Cooling</topic><topic>Energy efficiency</topic><topic>Fan blades</topic><topic>Finite element method</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Magnesium</topic><topic>Magnesium base alloys</topic><topic>Modal analysis</topic><topic>Numerical analysis</topic><topic>Resonant frequencies</topic><topic>Reynolds averaged Navier-Stokes method</topic><topic>Three dimensional printing</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hur, K H</creatorcontrib><creatorcontrib>Haider, B A</creatorcontrib><creatorcontrib>Sohn, C H</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Applied Fluid Mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hur, K H</au><au>Haider, B A</au><au>Sohn, C H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Numerical Study on the Performance of a Magnesium-Based Automotive Cooling Fan with Bead Structure</atitle><jtitle>Journal of Applied Fluid Mechanics</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>14</volume><issue>1</issue><spage>11</spage><epage>21</epage><pages>11-21</pages><issn>1735-3572</issn><eissn>1735-3645</eissn><abstract>This paper presents the numerical analysis of three types of magnesium-based, axial-flow automotive cooling fans. The numerical modeling is conducted for geometrically modified fan designs with and without bead structure. The effect of geometric modifications of the fan blades on the fan performances (P-Q curve), fan efficiency, and energy efficiency is investigated using unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with the sliding mesh methodology. The baseline fan having no-beads is fabricated using 3D printing technology and tested to measure the flow velocity and volumetric flow rate which shows good agreement to the numerical results. Subsequently, fans with beads are further optimized to achieve a significant increase in fan performances. To investigate the fan vibrations, modal analysis is also carried out using magnesium-alloy AZ31 as the fan material. The modal analysis gives natural frequencies of all types of fans which are beyond the fan rotational frequency and seems satisfactory.</abstract><cop>Isfahan</cop><pub>Isfahan University of Technology</pub><doi>10.47176/jafm.14.01.31222</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1735-3572 |
ispartof | Journal of Applied Fluid Mechanics, 2021-01, Vol.14 (1), p.11-21 |
issn | 1735-3572 1735-3645 |
language | eng |
recordid | cdi_proquest_journals_2475106071 |
source | Publicly Available Content Database |
subjects | Axial flow axial-flow cooling fan bead structure cfd fan performance modal analysis passive control Beads Computational fluid dynamics Cooling Energy efficiency Fan blades Finite element method Flow rates Flow velocity Magnesium Magnesium base alloys Modal analysis Numerical analysis Resonant frequencies Reynolds averaged Navier-Stokes method Three dimensional printing Vibrations |
title | A Numerical Study on the Performance of a Magnesium-Based Automotive Cooling Fan with Bead Structure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Numerical%20Study%20on%20the%20Performance%20of%20a%20Magnesium-Based%20Automotive%20Cooling%20Fan%20with%20Bead%20Structure&rft.jtitle=Journal%20of%20Applied%20Fluid%20Mechanics&rft.au=Hur,%20K%20H&rft.date=2021-01-01&rft.volume=14&rft.issue=1&rft.spage=11&rft.epage=21&rft.pages=11-21&rft.issn=1735-3572&rft.eissn=1735-3645&rft_id=info:doi/10.47176/jafm.14.01.31222&rft_dat=%3Cproquest_doaj_%3E2475106071%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-aaa65ef91c4e21a8d08898387f61c8492feabd5a858b3f26339de530f72845983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2475106071&rft_id=info:pmid/&rfr_iscdi=true |