Loading…
Naïve Bayes classifier enabled home energy management scheme for cost-effective end-user comfort
Under demand response enabled demand-side management, the home energy management (HEM) schemes schedule appliances for balancing both energy and demand within a residence. This scheme enables the user to achieve either a minimum electricity bill (EB) or maximum comfort. There is always the added bur...
Saved in:
Published in: | Journal of intelligent & fuzzy systems 2021-01, Vol.40 (1), p.403-413 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Under demand response enabled demand-side management, the home energy management (HEM) schemes schedule appliances for balancing both energy and demand within a residence. This scheme enables the user to achieve either a minimum electricity bill (EB) or maximum comfort. There is always the added burden on a HEM scheme to obtain the least possible EB with comfort. However, if a time window that contains comfortable time slots of the day for an appliance operation, is identified, and if the cost-effective schedule-pattern gets generated from these windows autonomously, then the burden can be reduced. Therefore, this paper proposes a two-level method that can assist the HEM scheme by generating a cost-effective schedule-pattern for scheduling home appliances. The first level uses a classifier to identify the comfortable time window from past ON and OFF events. The second level uses pattern generation algorithms to generate a cost-effective schedule-pattern from the identified window. The generated cost-effective schedule-pattern is applied to a HEM scheme as input to demonstrate the proposed two-level approach. The simulation results exhibit that the proposed approach helps the HEM scheme to schedule home appliances cost-effectively with a satisfactory user-comfort between 90% and 100%. |
---|---|
ISSN: | 1064-1246 1875-8967 |
DOI: | 10.3233/JIFS-191862 |