Loading…

Naïve Bayes classifier enabled home energy management scheme for cost-effective end-user comfort

Under demand response enabled demand-side management, the home energy management (HEM) schemes schedule appliances for balancing both energy and demand within a residence. This scheme enables the user to achieve either a minimum electricity bill (EB) or maximum comfort. There is always the added bur...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent & fuzzy systems 2021-01, Vol.40 (1), p.403-413
Main Authors: Khan, M. Firdouse Ali, Chellamani, Ganesh Kumar, Chandramani, Premanand Venkatesh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Under demand response enabled demand-side management, the home energy management (HEM) schemes schedule appliances for balancing both energy and demand within a residence. This scheme enables the user to achieve either a minimum electricity bill (EB) or maximum comfort. There is always the added burden on a HEM scheme to obtain the least possible EB with comfort. However, if a time window that contains comfortable time slots of the day for an appliance operation, is identified, and if the cost-effective schedule-pattern gets generated from these windows autonomously, then the burden can be reduced. Therefore, this paper proposes a two-level method that can assist the HEM scheme by generating a cost-effective schedule-pattern for scheduling home appliances. The first level uses a classifier to identify the comfortable time window from past ON and OFF events. The second level uses pattern generation algorithms to generate a cost-effective schedule-pattern from the identified window. The generated cost-effective schedule-pattern is applied to a HEM scheme as input to demonstrate the proposed two-level approach. The simulation results exhibit that the proposed approach helps the HEM scheme to schedule home appliances cost-effectively with a satisfactory user-comfort between 90% and 100%.
ISSN:1064-1246
1875-8967
DOI:10.3233/JIFS-191862