Loading…

Invariable mobility edge in a quasiperiodic lattice

In this paper, we study a one-dimensional tight-binding model with tunable incommensurate potentials. Through the analysis of the inverse participation rate, we uncover that the wave functions corresponding to the energies of the system exhibit different properties. There exists a critical energy un...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-05
Main Authors: Liu, Tong, Zhu, Yufei, Cheng, Shujie, Li, Feng, Guo, Hao, Pu, Yong
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Liu, Tong
Zhu, Yufei
Cheng, Shujie
Li, Feng
Guo, Hao
Pu, Yong
description In this paper, we study a one-dimensional tight-binding model with tunable incommensurate potentials. Through the analysis of the inverse participation rate, we uncover that the wave functions corresponding to the energies of the system exhibit different properties. There exists a critical energy under which the wave functions corresponding to all energies are extended. On the contrary, the wave functions corresponding to all energies above the critical energy are localized. However, we are surprised to find that the critical energy is a constant independent of the potentials. We use the self-dual relation to solve the critical energy, namely the mobility edge, and then we verify the analytical results again by analyzing the spatial distributions of the wave functions. Finally, we give a brief discussion on the possible experimental observation of the invariable mobility edge in the system of ultracold atoms in optical lattices.
doi_str_mv 10.48550/arxiv.2101.00177
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2475214445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475214445</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-535734c000db76f5376081dd112104c13e63672ca08be07dedd32f311e142e643</originalsourceid><addsrcrecordid>eNotjstKw0AUQAdBsNR-gLsB14n3MTeTrRQfhYKb7sskcyNTYtLmUfTvDejq7M45xjwg5K4UgacwfKdrTgiYA6D3N2ZFzJiVjujObMbxBABUeBLhleFddw1DClWr9quvUpumH6vxU23qbLCXOYzprEPqY6ptG6Yp1XpvbpvQjrr559ocXl8O2_ds__G22z7vsyAkmbB4dvUSi5UvGmFfQIkxIi5vrkbWgpeLOkBZKfioMTI1jKjoSAvHa_P4pz0P_WXWcTqe-nnoluKRnBdC55zwL6jQRLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475214445</pqid></control><display><type>article</type><title>Invariable mobility edge in a quasiperiodic lattice</title><source>Publicly Available Content Database</source><creator>Liu, Tong ; Zhu, Yufei ; Cheng, Shujie ; Li, Feng ; Guo, Hao ; Pu, Yong</creator><creatorcontrib>Liu, Tong ; Zhu, Yufei ; Cheng, Shujie ; Li, Feng ; Guo, Hao ; Pu, Yong</creatorcontrib><description>In this paper, we study a one-dimensional tight-binding model with tunable incommensurate potentials. Through the analysis of the inverse participation rate, we uncover that the wave functions corresponding to the energies of the system exhibit different properties. There exists a critical energy under which the wave functions corresponding to all energies are extended. On the contrary, the wave functions corresponding to all energies above the critical energy are localized. However, we are surprised to find that the critical energy is a constant independent of the potentials. We use the self-dual relation to solve the critical energy, namely the mobility edge, and then we verify the analytical results again by analyzing the spatial distributions of the wave functions. Finally, we give a brief discussion on the possible experimental observation of the invariable mobility edge in the system of ultracold atoms in optical lattices.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2101.00177</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Optical lattices ; Spatial distribution ; Wave functions</subject><ispartof>arXiv.org, 2021-05</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2475214445?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Zhu, Yufei</creatorcontrib><creatorcontrib>Cheng, Shujie</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Guo, Hao</creatorcontrib><creatorcontrib>Pu, Yong</creatorcontrib><title>Invariable mobility edge in a quasiperiodic lattice</title><title>arXiv.org</title><description>In this paper, we study a one-dimensional tight-binding model with tunable incommensurate potentials. Through the analysis of the inverse participation rate, we uncover that the wave functions corresponding to the energies of the system exhibit different properties. There exists a critical energy under which the wave functions corresponding to all energies are extended. On the contrary, the wave functions corresponding to all energies above the critical energy are localized. However, we are surprised to find that the critical energy is a constant independent of the potentials. We use the self-dual relation to solve the critical energy, namely the mobility edge, and then we verify the analytical results again by analyzing the spatial distributions of the wave functions. Finally, we give a brief discussion on the possible experimental observation of the invariable mobility edge in the system of ultracold atoms in optical lattices.</description><subject>Optical lattices</subject><subject>Spatial distribution</subject><subject>Wave functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjstKw0AUQAdBsNR-gLsB14n3MTeTrRQfhYKb7sskcyNTYtLmUfTvDejq7M45xjwg5K4UgacwfKdrTgiYA6D3N2ZFzJiVjujObMbxBABUeBLhleFddw1DClWr9quvUpumH6vxU23qbLCXOYzprEPqY6ptG6Yp1XpvbpvQjrr559ocXl8O2_ds__G22z7vsyAkmbB4dvUSi5UvGmFfQIkxIi5vrkbWgpeLOkBZKfioMTI1jKjoSAvHa_P4pz0P_WXWcTqe-nnoluKRnBdC55zwL6jQRLM</recordid><startdate>20210517</startdate><enddate>20210517</enddate><creator>Liu, Tong</creator><creator>Zhu, Yufei</creator><creator>Cheng, Shujie</creator><creator>Li, Feng</creator><creator>Guo, Hao</creator><creator>Pu, Yong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210517</creationdate><title>Invariable mobility edge in a quasiperiodic lattice</title><author>Liu, Tong ; Zhu, Yufei ; Cheng, Shujie ; Li, Feng ; Guo, Hao ; Pu, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-535734c000db76f5376081dd112104c13e63672ca08be07dedd32f311e142e643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Optical lattices</topic><topic>Spatial distribution</topic><topic>Wave functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Zhu, Yufei</creatorcontrib><creatorcontrib>Cheng, Shujie</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Guo, Hao</creatorcontrib><creatorcontrib>Pu, Yong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Tong</au><au>Zhu, Yufei</au><au>Cheng, Shujie</au><au>Li, Feng</au><au>Guo, Hao</au><au>Pu, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invariable mobility edge in a quasiperiodic lattice</atitle><jtitle>arXiv.org</jtitle><date>2021-05-17</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this paper, we study a one-dimensional tight-binding model with tunable incommensurate potentials. Through the analysis of the inverse participation rate, we uncover that the wave functions corresponding to the energies of the system exhibit different properties. There exists a critical energy under which the wave functions corresponding to all energies are extended. On the contrary, the wave functions corresponding to all energies above the critical energy are localized. However, we are surprised to find that the critical energy is a constant independent of the potentials. We use the self-dual relation to solve the critical energy, namely the mobility edge, and then we verify the analytical results again by analyzing the spatial distributions of the wave functions. Finally, we give a brief discussion on the possible experimental observation of the invariable mobility edge in the system of ultracold atoms in optical lattices.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2101.00177</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2475214445
source Publicly Available Content Database
subjects Optical lattices
Spatial distribution
Wave functions
title Invariable mobility edge in a quasiperiodic lattice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A10%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invariable%20mobility%20edge%20in%20a%20quasiperiodic%20lattice&rft.jtitle=arXiv.org&rft.au=Liu,%20Tong&rft.date=2021-05-17&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2101.00177&rft_dat=%3Cproquest%3E2475214445%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-535734c000db76f5376081dd112104c13e63672ca08be07dedd32f311e142e643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2475214445&rft_id=info:pmid/&rfr_iscdi=true