Loading…

Generalized Geometric Polynomials Via Steffensen’s Generalized Factorials and Tanny’s Operators

Our purpose is to give a generalization of geometric polynomials by applying an appropriate linear transformation on the generalized factorial function. Some identities are investigated including explicit formula, generating function and recurrence relations. Furthermore, some relations with other p...

Full description

Saved in:
Bibliographic Details
Published in:Indian journal of pure and applied mathematics 2020-12, Vol.51 (4), p.1713-1727
Main Authors: Belbachir, Hacène, Djemmada, Yahia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-66f51348cec8ca1cbd3acb92cf134398936c7fa7ff5f31a0185c53de11e006563
cites cdi_FETCH-LOGICAL-c316t-66f51348cec8ca1cbd3acb92cf134398936c7fa7ff5f31a0185c53de11e006563
container_end_page 1727
container_issue 4
container_start_page 1713
container_title Indian journal of pure and applied mathematics
container_volume 51
creator Belbachir, Hacène
Djemmada, Yahia
description Our purpose is to give a generalization of geometric polynomials by applying an appropriate linear transformation on the generalized factorial function. Some identities are investigated including explicit formula, generating function and recurrence relations. Furthermore, some relations with other polynomials are given.
doi_str_mv 10.1007/s13226-020-0491-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2475492261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475492261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-66f51348cec8ca1cbd3acb92cf134398936c7fa7ff5f31a0185c53de11e006563</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4G3BczSz2WSToxRbhUIFq9eQZhPZ0iY12R7qydfw9XwS066gF08ZMt8_w3wIXQK5BkLqmwS0LDkmJcGkkoDFERoQWTNcV5wd55qAxIwJcYrOUloSwimRcoDMxHob9ap9t00xsWFtu9ia4jGsdj6sW71KxUuri6fOOmd9sv7r4zMVf0NjbboQD6T2TTHX3u8O0GyTmdxK5-jE5ba9-HmH6Hl8Nx_d4-ls8jC6nWJDgXeYc8eAVsJYI4wGs2ioNgtZGpd_qRSSclM7XTvHHAVNQDDDaGMBbD6HcTpEV_3cTQxvW5s6tQzb6PNKVVY1q2Q2BJmCnjIxpBStU5vYrnXcKSBq71L1LlV2qfYulciZss-kzPpXG38n_x_6Bt5xedY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475492261</pqid></control><display><type>article</type><title>Generalized Geometric Polynomials Via Steffensen’s Generalized Factorials and Tanny’s Operators</title><source>Springer Link</source><creator>Belbachir, Hacène ; Djemmada, Yahia</creator><creatorcontrib>Belbachir, Hacène ; Djemmada, Yahia</creatorcontrib><description>Our purpose is to give a generalization of geometric polynomials by applying an appropriate linear transformation on the generalized factorial function. Some identities are investigated including explicit formula, generating function and recurrence relations. Furthermore, some relations with other polynomials are given.</description><identifier>ISSN: 0019-5588</identifier><identifier>EISSN: 0975-7465</identifier><identifier>DOI: 10.1007/s13226-020-0491-8</identifier><language>eng</language><publisher>New Delhi: Indian National Science Academy</publisher><subject>Applications of Mathematics ; Factorials ; Linear transformations ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Operators (mathematics) ; Polynomials</subject><ispartof>Indian journal of pure and applied mathematics, 2020-12, Vol.51 (4), p.1713-1727</ispartof><rights>Indian National Science Academy 2020</rights><rights>Indian National Science Academy 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-66f51348cec8ca1cbd3acb92cf134398936c7fa7ff5f31a0185c53de11e006563</citedby><cites>FETCH-LOGICAL-c316t-66f51348cec8ca1cbd3acb92cf134398936c7fa7ff5f31a0185c53de11e006563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Belbachir, Hacène</creatorcontrib><creatorcontrib>Djemmada, Yahia</creatorcontrib><title>Generalized Geometric Polynomials Via Steffensen’s Generalized Factorials and Tanny’s Operators</title><title>Indian journal of pure and applied mathematics</title><addtitle>Indian J Pure Appl Math</addtitle><description>Our purpose is to give a generalization of geometric polynomials by applying an appropriate linear transformation on the generalized factorial function. Some identities are investigated including explicit formula, generating function and recurrence relations. Furthermore, some relations with other polynomials are given.</description><subject>Applications of Mathematics</subject><subject>Factorials</subject><subject>Linear transformations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Operators (mathematics)</subject><subject>Polynomials</subject><issn>0019-5588</issn><issn>0975-7465</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKsP4G3BczSz2WSToxRbhUIFq9eQZhPZ0iY12R7qydfw9XwS066gF08ZMt8_w3wIXQK5BkLqmwS0LDkmJcGkkoDFERoQWTNcV5wd55qAxIwJcYrOUloSwimRcoDMxHob9ap9t00xsWFtu9ia4jGsdj6sW71KxUuri6fOOmd9sv7r4zMVf0NjbboQD6T2TTHX3u8O0GyTmdxK5-jE5ba9-HmH6Hl8Nx_d4-ls8jC6nWJDgXeYc8eAVsJYI4wGs2ioNgtZGpd_qRSSclM7XTvHHAVNQDDDaGMBbD6HcTpEV_3cTQxvW5s6tQzb6PNKVVY1q2Q2BJmCnjIxpBStU5vYrnXcKSBq71L1LlV2qfYulciZss-kzPpXG38n_x_6Bt5xedY</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Belbachir, Hacène</creator><creator>Djemmada, Yahia</creator><general>Indian National Science Academy</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201201</creationdate><title>Generalized Geometric Polynomials Via Steffensen’s Generalized Factorials and Tanny’s Operators</title><author>Belbachir, Hacène ; Djemmada, Yahia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-66f51348cec8ca1cbd3acb92cf134398936c7fa7ff5f31a0185c53de11e006563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Factorials</topic><topic>Linear transformations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Operators (mathematics)</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belbachir, Hacène</creatorcontrib><creatorcontrib>Djemmada, Yahia</creatorcontrib><collection>CrossRef</collection><jtitle>Indian journal of pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belbachir, Hacène</au><au>Djemmada, Yahia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Geometric Polynomials Via Steffensen’s Generalized Factorials and Tanny’s Operators</atitle><jtitle>Indian journal of pure and applied mathematics</jtitle><stitle>Indian J Pure Appl Math</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>51</volume><issue>4</issue><spage>1713</spage><epage>1727</epage><pages>1713-1727</pages><issn>0019-5588</issn><eissn>0975-7465</eissn><abstract>Our purpose is to give a generalization of geometric polynomials by applying an appropriate linear transformation on the generalized factorial function. Some identities are investigated including explicit formula, generating function and recurrence relations. Furthermore, some relations with other polynomials are given.</abstract><cop>New Delhi</cop><pub>Indian National Science Academy</pub><doi>10.1007/s13226-020-0491-8</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0019-5588
ispartof Indian journal of pure and applied mathematics, 2020-12, Vol.51 (4), p.1713-1727
issn 0019-5588
0975-7465
language eng
recordid cdi_proquest_journals_2475492261
source Springer Link
subjects Applications of Mathematics
Factorials
Linear transformations
Mathematics
Mathematics and Statistics
Numerical Analysis
Operators (mathematics)
Polynomials
title Generalized Geometric Polynomials Via Steffensen’s Generalized Factorials and Tanny’s Operators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A14%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Geometric%20Polynomials%20Via%20Steffensen%E2%80%99s%20Generalized%20Factorials%20and%20Tanny%E2%80%99s%20Operators&rft.jtitle=Indian%20journal%20of%20pure%20and%20applied%20mathematics&rft.au=Belbachir,%20Hac%C3%A8ne&rft.date=2020-12-01&rft.volume=51&rft.issue=4&rft.spage=1713&rft.epage=1727&rft.pages=1713-1727&rft.issn=0019-5588&rft.eissn=0975-7465&rft_id=info:doi/10.1007/s13226-020-0491-8&rft_dat=%3Cproquest_cross%3E2475492261%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-66f51348cec8ca1cbd3acb92cf134398936c7fa7ff5f31a0185c53de11e006563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2475492261&rft_id=info:pmid/&rfr_iscdi=true