Loading…
Generalized Geometric Polynomials Via Steffensen’s Generalized Factorials and Tanny’s Operators
Our purpose is to give a generalization of geometric polynomials by applying an appropriate linear transformation on the generalized factorial function. Some identities are investigated including explicit formula, generating function and recurrence relations. Furthermore, some relations with other p...
Saved in:
Published in: | Indian journal of pure and applied mathematics 2020-12, Vol.51 (4), p.1713-1727 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-66f51348cec8ca1cbd3acb92cf134398936c7fa7ff5f31a0185c53de11e006563 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-66f51348cec8ca1cbd3acb92cf134398936c7fa7ff5f31a0185c53de11e006563 |
container_end_page | 1727 |
container_issue | 4 |
container_start_page | 1713 |
container_title | Indian journal of pure and applied mathematics |
container_volume | 51 |
creator | Belbachir, Hacène Djemmada, Yahia |
description | Our purpose is to give a generalization of geometric polynomials by applying an appropriate linear transformation on the generalized factorial function. Some identities are investigated including explicit formula, generating function and recurrence relations. Furthermore, some relations with other polynomials are given. |
doi_str_mv | 10.1007/s13226-020-0491-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2475492261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475492261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-66f51348cec8ca1cbd3acb92cf134398936c7fa7ff5f31a0185c53de11e006563</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4G3BczSz2WSToxRbhUIFq9eQZhPZ0iY12R7qydfw9XwS066gF08ZMt8_w3wIXQK5BkLqmwS0LDkmJcGkkoDFERoQWTNcV5wd55qAxIwJcYrOUloSwimRcoDMxHob9ap9t00xsWFtu9ia4jGsdj6sW71KxUuri6fOOmd9sv7r4zMVf0NjbboQD6T2TTHX3u8O0GyTmdxK5-jE5ba9-HmH6Hl8Nx_d4-ls8jC6nWJDgXeYc8eAVsJYI4wGs2ioNgtZGpd_qRSSclM7XTvHHAVNQDDDaGMBbD6HcTpEV_3cTQxvW5s6tQzb6PNKVVY1q2Q2BJmCnjIxpBStU5vYrnXcKSBq71L1LlV2qfYulciZss-kzPpXG38n_x_6Bt5xedY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475492261</pqid></control><display><type>article</type><title>Generalized Geometric Polynomials Via Steffensen’s Generalized Factorials and Tanny’s Operators</title><source>Springer Link</source><creator>Belbachir, Hacène ; Djemmada, Yahia</creator><creatorcontrib>Belbachir, Hacène ; Djemmada, Yahia</creatorcontrib><description>Our purpose is to give a generalization of geometric polynomials by applying an appropriate linear transformation on the generalized factorial function. Some identities are investigated including explicit formula, generating function and recurrence relations. Furthermore, some relations with other polynomials are given.</description><identifier>ISSN: 0019-5588</identifier><identifier>EISSN: 0975-7465</identifier><identifier>DOI: 10.1007/s13226-020-0491-8</identifier><language>eng</language><publisher>New Delhi: Indian National Science Academy</publisher><subject>Applications of Mathematics ; Factorials ; Linear transformations ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Operators (mathematics) ; Polynomials</subject><ispartof>Indian journal of pure and applied mathematics, 2020-12, Vol.51 (4), p.1713-1727</ispartof><rights>Indian National Science Academy 2020</rights><rights>Indian National Science Academy 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-66f51348cec8ca1cbd3acb92cf134398936c7fa7ff5f31a0185c53de11e006563</citedby><cites>FETCH-LOGICAL-c316t-66f51348cec8ca1cbd3acb92cf134398936c7fa7ff5f31a0185c53de11e006563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Belbachir, Hacène</creatorcontrib><creatorcontrib>Djemmada, Yahia</creatorcontrib><title>Generalized Geometric Polynomials Via Steffensen’s Generalized Factorials and Tanny’s Operators</title><title>Indian journal of pure and applied mathematics</title><addtitle>Indian J Pure Appl Math</addtitle><description>Our purpose is to give a generalization of geometric polynomials by applying an appropriate linear transformation on the generalized factorial function. Some identities are investigated including explicit formula, generating function and recurrence relations. Furthermore, some relations with other polynomials are given.</description><subject>Applications of Mathematics</subject><subject>Factorials</subject><subject>Linear transformations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Operators (mathematics)</subject><subject>Polynomials</subject><issn>0019-5588</issn><issn>0975-7465</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKsP4G3BczSz2WSToxRbhUIFq9eQZhPZ0iY12R7qydfw9XwS066gF08ZMt8_w3wIXQK5BkLqmwS0LDkmJcGkkoDFERoQWTNcV5wd55qAxIwJcYrOUloSwimRcoDMxHob9ap9t00xsWFtu9ia4jGsdj6sW71KxUuri6fOOmd9sv7r4zMVf0NjbboQD6T2TTHX3u8O0GyTmdxK5-jE5ba9-HmH6Hl8Nx_d4-ls8jC6nWJDgXeYc8eAVsJYI4wGs2ioNgtZGpd_qRSSclM7XTvHHAVNQDDDaGMBbD6HcTpEV_3cTQxvW5s6tQzb6PNKVVY1q2Q2BJmCnjIxpBStU5vYrnXcKSBq71L1LlV2qfYulciZss-kzPpXG38n_x_6Bt5xedY</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Belbachir, Hacène</creator><creator>Djemmada, Yahia</creator><general>Indian National Science Academy</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201201</creationdate><title>Generalized Geometric Polynomials Via Steffensen’s Generalized Factorials and Tanny’s Operators</title><author>Belbachir, Hacène ; Djemmada, Yahia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-66f51348cec8ca1cbd3acb92cf134398936c7fa7ff5f31a0185c53de11e006563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Factorials</topic><topic>Linear transformations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Operators (mathematics)</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belbachir, Hacène</creatorcontrib><creatorcontrib>Djemmada, Yahia</creatorcontrib><collection>CrossRef</collection><jtitle>Indian journal of pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belbachir, Hacène</au><au>Djemmada, Yahia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Geometric Polynomials Via Steffensen’s Generalized Factorials and Tanny’s Operators</atitle><jtitle>Indian journal of pure and applied mathematics</jtitle><stitle>Indian J Pure Appl Math</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>51</volume><issue>4</issue><spage>1713</spage><epage>1727</epage><pages>1713-1727</pages><issn>0019-5588</issn><eissn>0975-7465</eissn><abstract>Our purpose is to give a generalization of geometric polynomials by applying an appropriate linear transformation on the generalized factorial function. Some identities are investigated including explicit formula, generating function and recurrence relations. Furthermore, some relations with other polynomials are given.</abstract><cop>New Delhi</cop><pub>Indian National Science Academy</pub><doi>10.1007/s13226-020-0491-8</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-5588 |
ispartof | Indian journal of pure and applied mathematics, 2020-12, Vol.51 (4), p.1713-1727 |
issn | 0019-5588 0975-7465 |
language | eng |
recordid | cdi_proquest_journals_2475492261 |
source | Springer Link |
subjects | Applications of Mathematics Factorials Linear transformations Mathematics Mathematics and Statistics Numerical Analysis Operators (mathematics) Polynomials |
title | Generalized Geometric Polynomials Via Steffensen’s Generalized Factorials and Tanny’s Operators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A14%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Geometric%20Polynomials%20Via%20Steffensen%E2%80%99s%20Generalized%20Factorials%20and%20Tanny%E2%80%99s%20Operators&rft.jtitle=Indian%20journal%20of%20pure%20and%20applied%20mathematics&rft.au=Belbachir,%20Hac%C3%A8ne&rft.date=2020-12-01&rft.volume=51&rft.issue=4&rft.spage=1713&rft.epage=1727&rft.pages=1713-1727&rft.issn=0019-5588&rft.eissn=0975-7465&rft_id=info:doi/10.1007/s13226-020-0491-8&rft_dat=%3Cproquest_cross%3E2475492261%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-66f51348cec8ca1cbd3acb92cf134398936c7fa7ff5f31a0185c53de11e006563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2475492261&rft_id=info:pmid/&rfr_iscdi=true |