Loading…
Tropical peatlands and their contribution to the global carbon cycle and climate change
Peatlands are carbon‐rich ecosystems that cover 185–423 million hectares (Mha) of the earth's surface. The majority of the world's peatlands are in temperate and boreal zones, whereas tropical ones cover only a total area of 90–170 Mha. However, there are still considerable uncertainties i...
Saved in:
Published in: | Global change biology 2021-02, Vol.27 (3), p.489-505 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Peatlands are carbon‐rich ecosystems that cover 185–423 million hectares (Mha) of the earth's surface. The majority of the world's peatlands are in temperate and boreal zones, whereas tropical ones cover only a total area of 90–170 Mha. However, there are still considerable uncertainties in C stock estimates as well as a lack of information about depth, bulk density and carbon accumulation rates. The incomplete data are notable especially in tropical peatlands located in South America, which are estimated to have the largest area of peatlands in the tropical zone. This paper displays the current state of knowledge surrounding tropical peatlands and their biophysical characteristics, distribution and carbon stock, role in the global climate, the impacts of direct human disturbances on carbon accumulation rates and greenhouse gas (GHG) emissions. Based on the new peat extension and depth data, we estimate that tropical peatlands store 152–288 Gt C, or about half of the global peatland emitted carbon. We discuss the knowledge gaps in research on distribution, depth, C stock and fluxes in these ecosystems which play an important role in the global carbon cycle and risk releasing large quantities of GHGs into the atmosphere (CO2 and CH4) when subjected to anthropogenic interferences (e.g., drainage and deforestation). Recent studies show that although climate change has an impact on the carbon fluxes of these ecosystems, the direct anthropogenic disturbance may play a greater role. The future of these systems as carbon sinks will depend on advancing current scientific knowledge and incorporating local understanding to support policies geared toward managing and conserving peatlands in vulnerable regions, such as the Amazon where recent records show increased forest fires and deforestation.
Tropical peatlands store 152–288 Gt of carbon, which is significantly higher than the previously reported values. The carbon accumulation rates in undisturbed tropical peatlands are generally much higher than in intact old‐growth tropical forests. Tropical disturbed peatlands have higher CO2 emissions than non‐disturbed peatlands due to the maintenance of natural soil moisture conditions and groundwater levels. |
---|---|
ISSN: | 1354-1013 1365-2486 |
DOI: | 10.1111/gcb.15408 |