Loading…

Marble Waste Valorization through Alkali Activation

In the present study, the valorization potential of marble waste in the presence of metakaolin via alkali activation was explored. The activating solution used consisted of NaOH and sodium silicate solutions. The effects of marble waste to metakaolin ratio, particle size of raw materials, curing tem...

Full description

Saved in:
Bibliographic Details
Published in:Minerals (Basel) 2021-01, Vol.11 (1), p.46
Main Authors: Komnitsas, Konstantinos, Soultana, Athanasia, Bartzas, Georgios
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present study, the valorization potential of marble waste in the presence of metakaolin via alkali activation was explored. The activating solution used consisted of NaOH and sodium silicate solutions. The effects of marble waste to metakaolin ratio, particle size of raw materials, curing temperature, and Na2O/SiO2 and H2O/Na2O molar ratios present in the activating solution on the main properties and the morphology of the produced alkali-activated materials (AAMs) was evaluated. The durability and structural integrity of the AAMs after firing at temperatures between 200 and 600 °C, immersion in deionized water and 1 mol/L NaCl solution for different time periods and subjection to freeze–thaw cycles were also investigated. Characterization techniques including Fourier transform infrared spectroscopy, X-ray diffraction, mercury intrusion porosimetry and scanning electron microscopy were used in order to study the structure of the produced AAMs. Τhe highest compressive strength (~36 MPa) was achieved by the AAMs prepared with marble waste to metakaolin mass ratio of 0.3 after curing at 40 °C. The results indicated that the utilization of marble waste in the presence of metakaolin enables the production of AAMs with good physical (porosity, density and water absorption) and mechanical properties, thus contributing to the valorization of this waste type and the reduction of the environmental footprint of the marble industry.
ISSN:2075-163X
2075-163X
DOI:10.3390/min11010046